fetch /fetch logic — advance or not

from incremented PC ——

MUX

N
predicted PC

should we stall?

fetch/decode logic — bubble or not

no-op value — OXF ——
MUX ——

R

should we send
no-op value (“bubble™)?

HCLRS signals

register aB {

}

HCLRS: every register bank has these MUXes built-in

stall_B: keep old value for all registers
register input — register output

bubble_B: use default value for all registers
register input — default value

exercise

register aB {

value : 8 OxFF;
} stall: keep old value
bubble: store default value
time a_value B_value stall_B bubble_B
0 Ox01 OXFF 0 0
1 0x02 7222 1 0
2 0x03 2272 0 0
3 Ox04 2272 0] 1
4 0Ox05 ?227? 0 0
5 OX06 2272 0] 0
6 0Ox07 2272 1 0
7 Ox08 2272 1 0
8 2272

10

exercise result

register aB {
value : 8 = OxFF;
}

a_value B_value

tall_B bubble_B

3
®
[%)]

0x01 OxFF

Ox02 Ox01

Ox03 Ox01

Ox04 Ox03

0x05 OxFF

Ox06 Ox05

Ox07 Ox06

[l dlol{ollol{o)l Jdlo]

[o]lol[o]{oll glo){o](o]

0x08 0x06

N EIEGE RN EREE

Ox06

exercise: squash + stall (1)

[time[fetch decode |execute [memory |writeback |

TE b B R
?v ~‘~~‘~;? ~‘~~"‘L? ~‘~~‘~;? ~‘~~"‘L?

2 [[nop c [nop B |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

exercise: what are the ?s
write down your answers,
then compare with your neighbors

12

exercise: squash + stall (1)

[time[fetch decode |execute [memory |writeback |
= D C B A |
2 [E [nop C [nop B |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

12

exercise: squash + stall (2)

timelfetch |decode |execute [memory |writeback |

T E b Bk
F AU SRR SRAL T IR

2 | 2 Ic [nop B |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

13

exercise: squash + stall (2)

[time[fetch decode |execute [memory |writeback |

TE b B R
?v ~‘~~‘~;? ~‘~~"‘L? ~‘~~‘~;? ~‘~~"‘L?

G E c [nop B |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

exercise: what are the ?s
write down your answers,
then compare with your neighbors

13

exercise: squash + stall (2)

[time[fetch decode |execute [memory |writeback |
= D C B A |
2 F E C nop B

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

13

ret stall

time fetch ldecode [execute [memory |writeback |
0 call |

1 Jret [call |

2 |wait for ret [ret [call |

3 |wait for ret [nothing [ret |call (store) |

4 |wait for ret |nothing |nothing et (load) [call |
5 Jaddg Inothing |nothing [nothing et |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

14

ret stall

[time[fetch [decode lexecute [memory |writeback |
0 call |

1 Jret |call |

2 |wait for ret [ret |call |

3 |wait for ret |nothing [ret |call (store) |

4 |wait for ret |nothing |nothing [ret (load) |call |
5 Jaddg Inothing |nothing [nothing |ret |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

14

ret stall

[time[fetch [decode lexecute [memory |writeback |
0 call |

1 Jret |call |

2 |wait for ret [ret |call |

3 |wait for ret |nothing [ret |call (store) |

4 |wait for ret |nothing |nothing [ret (load) |call |
5 Jaddg Inothing |nothing [nothing |ret |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

ret stall

[time[fetch [decode lexecute [memory |writeback |
0 call |

1 Jret |call |

2 |wait for ret [ret |call |

3 |wait for ret |nothing [ret |call (store) |

4 |wait for ret |nothing |nothing ret (load) |call |
5 Jaddg Inothing |nothing [nothing |ret |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

ret stall

[time[fetch [decode lexecute [memory |writeback |
0 call |

1 Jret |call |

2 |wait for ret [ret |call |

3 |wait for ret |nothing [ret |call (store) |

4 |wait for ret |nothing |nothing ret (load) |call |
5 Jaddg Inothing |nothing [nothing |ret |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

HCLRS bubble example

register fD {
icode : 4 = NOP;
rA : 4 = REG_NONE;
rB : 4 REG_NONE;

35

wire need_ret_bubble : 1;

need_ret_bubble = (D_icode == RET ||
E_icode == RET ||
M_icode == RET);

bubble_D = (need_ret_bubble ||
/* other cases %/);

15

squashing with stall/bubble

[time[fetch [decode lexecute [memory |writeback |
1 Jsubg |
N
2 ne lsubq |
3 |addq [7] line lsubq (set ZF) |

4 |rmmovq [?] laddq [?] [ine (use ZF) |subg |

5 [xorq Inothing |nothing line (done) |subg |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

16

squashing with stall/bubble

[time[fetch [decode lexecute [memory |writeback |
1 Jsubg |
N
2 ne lsubq |
N\LN
3 |addq [7] line lsubq (set ZF) |

4 |rmmovq [?] laddq [?] [ine (use ZF) |subg |

5 [xorq Inothing |nothing line (done) |subg |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

16

squashing with stall/bubble

[time[fetch [decode lexecute [memory |writeback |
1 |subg |
N
]2 [jne |subq \
N N
3 |addq [7] line lsubq (set ZF) |

N [I—
4 |rmmovq [?] laddq [?] [ine (use ZF) |subg |

5 [xorq Inothing |nothing line (done) |subg |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

16

squashing with stall/bubble

[time[fetch [decode lexecute [memory |writeback |
1 subg |
N
2 ne lsubq |
N N
3 |addq [7] line lsubq (set ZF) |
N N N
4 |rmmovq [?] laddq [?] [ine (use ZF) |subg |
5 [xorq Inothing |nothing line (done) |subg |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

16

squashing with stall/bubble

[time[fetch [decode lexecute [memory |writeback |
1 Jsubg |
N
2 ne lsubq |
N N
3 |addq [7] line lsubq (set ZF) |

4 |rmmovq [?] laddq [?] line (use ZF) |subg |
B — L Bl — N N

5 [~ I 1] L L. yan NIl b
L can compute bubble signal based on execute phase L‘
stal won't even start CC write for addq ew value

bubble TB] = use defaurt (no-opJ;

16

squashing HCLRS

just_detected_mispredict =

e_icode == JXX && !branchTaken;
bubble_D = just_detected_mispredict
bubble_E = just_detected_mispredict

17

missing pieces

multi-cycle memories

beyond pipelining: out-of-order, multiple issue

18

missing pieces

multi-cycle memories

beyond pipelining: out-of-order, multiple issue

19

multi-cycle memories

ideal case for memories: single-cycle

achieved with caches (next topic)
fast access to small number of things

typical performance:
90+% of the time: single-cycle

sometimes many cycles (3-400+)

20

variable speed memories

cycle# 0 1 2 3 4 5

memory is fast: (cache “hit”; recently accessed?)

mrmovq 0 (%rbx) , %r8
mrmovq 0 (%rcx) , %r9
addq %r8, %r9

memory is slow: (cache “miss”)

mrmovq 0 (%rbx) , %r8
mrmovq 0 (%rcx) , %r9
addq %r8, %r9

FDEMW
F D E M
F D D

F D EMM
F D E E
F D D

|

W
E

o m

m

m

=

21

missing pieces

multi-cycle memories

beyond pipelining: out-of-order, multiple issue

22

2004 CPU

ing' Point Unit

fnstracton
Cache

Clock Generator

Registers
L1 cache
L2 cache

DDR ‘Memory interface ===

. Branch Prediction
(approximate)

Image: a RNt O MD press image of Opteron die;
approx re _{;p‘_e?c:" h prediction location via chip-architect.org (Hans de Vries) 28

2004 CPU

Floating Point Unit

®
8
b
g
£
Fo
s
E
3
z
e«
[=]
[~]

Clock Generator

gi-ge: approx 2004 AMD press image of Opteron die;
Opteroi, ged register location via chip-architect.org (Hans de Vries) 30

2004 CPU
/\Registers

ing' Point Unit

J

LozdIStore |

®
8
b
g
£
Fo
s
E
3
z
e«
[=]
[~]

|
| I Memory Controller

Clock Generator

gi-ge: approx 2004 AMD press image of Opteron die;
Opteroi, ged register location via chip-architect.org (Hans de Vries) 30

2004 CPU

Registers
L1 cache

DDR‘Memory-interface

Clock Generator

gi-ge: approx 2004 AMD press image of Opteron die;
Opteroi, ged register location via chip-architect.org (Hans de Vries) 30

2004 CPU

ing' Point Unit

Load/Store Data Cache

Scan Align
== Micro-code

Clock Generator

Registers
L1 cache
L2 cache

DDR ‘Memory interface ===

bge: approx 2004 AMD press image of Opteron die;
Opterdil brox register location via chip-architect.org (Hans de Vries)

30

2004 CPU

ing' Point Unit

Load/Store Data Cache

Scan Align
== Micro-code

Clock Generator

Registers
L1 cache
L2 cache

DDR ‘Memory interface ===

bge: approx 2004 AMD press image of Opteron die;
Opterdil brox register location via chip-architect.org (Hans de Vries)

30

2004 CPU

Registers
L1 cache
L2 cache
L3 cache

ing' Point Unit

Scan Align
== Micro-code
]

|
‘
|
{
@
g
£
@
&
o~
a
o
E
@
b4
o«
a
a

fnstracton

== =

TSt e e

AMD
ge: approx 2004 AMD press image of Opteron die;

Opteroi, ged register location via chip-architect.org (Hans de Vries) 30

Clock Generator

2004 CPU

Registers
= L1 cache
— CHEHELEELH L2 cache

‘ L3 cache

Scan Align
== Micro-code
=== -
= =
oo sy e—

—o————————gtodsues] uadAjgEnas—

Clock Generator

bge: approx 2004 AMD press image of Opteron die;
Opterdil brox register location via chip-architect.org (Hans de Vries)

30

cache: real memory

address —

input (if writing) —
write enable —

Data Memory
AKA
L1 Data Cache

— value

— ready?

31

cache: real memory

address —

input (if writing) —
write enable —

Data Memory
AKA
L1 Data Cache

— value

— ready?

-

L2 Cache

31

the place of cache

read OxXABCD?

read ©x12347

Y

CPU

<
<

OxABCD is 1000

Cache

read OxXABCD?

Y

0x1234 is 4000

<
<

OxABCD is 1000

RAM
or
another
cache

memory hierarchy goals

performance of the fastest (smallest) memory
hide 100x latency difference? 99+ % hit (= value found in cache) rate

capacity of the largest (slowest) memory

33

memory hierarchy assumptions

temporal locality
“if a value is accessed now, it will be accessed again soon”
caches should keep recently accessed values

spatial locality
“if a value is accessed now, adjacent values will be accessed soon”
caches should store adjacent values at the same time

natural properties of programs — think about loops

34

locality examples

double computeMean(int length, double *values) {
double total = 0.0;
for (int i = 0; i < length; ++i) {
total += values[i];

}
return total / length;
}
temporal locality: machine code of the loop
spatial locality: machine code of most consecutive instructions

temporal locality: total, 1, length accessed repeatedly

spatial locality: values[1i+1] accessed after values|[i]

35

Caching

memory hierarchy assumptions

temporal locality
“if a value is accessed now, it will be accessed again soon”
caches should keep recently accessed values

spatial locality
“if a value is accessed now, adjacent values will be accessed soon”
caches should store adjacent values at the same time

natural properties of programs — think about loops

locality examples

double computeMean(int length, double *values) {
double total = 0.0;
for (int i = 0; i < length; ++i) {
total += values[i];

}
return total / length;
}
temporal locality: machine code of the loop
spatial locality: machine code of most consecutive instructions

temporal locality: total, 1, length accessed repeatedly

spatial locality: values[1i+1] accessed after values|[i]

building a (direct-mapped) cache

Cache Memory

value addresses bytes

00 00 00000-0006001 00 11

00 00 00010-0060011 22 33

00 00 00100-00101 55 55

00 00 00110-00111 66 77
01000-01001 88 99

cache block: 2 bytes 01010-01011 IAA BB
01100-01161 CC DD

01110-0601111 EE FF

10000-10001 FO F1

building a (direct-mapped) cache

read byte at 010117

Cache Memory

value addresses bytes

00 00 00000-0006001 00 11

00 00 00010-0060011 22 33

00 00 00100-00101 55 55

00 00 00110-00111 66 77
01000-01001 88 99

cache block: 2 bytes 01010-01011 AA BB
01100-01161 CC DD

01110-0601111 EE FF

10000-10001 FO F1

building a (direct-mapped) cache

read byte at 010117 exactly one place for each address

spread out what can go in a block

Cache Memory

index value addresses bytes
00 00 00 --+~00000-00001 00 11
01 00 00 p--+00010-00011 22 33
10 00 00 - ~00100-00101 [55 55
11 00 00 [->00110-00111 |66 77
2N \'01000-01001 88 99

cache block: 2 bytes ‘\\\\\@1@1@_@1011 AA BB
direct-mapped ~%01100-01101 (CC DD
'91110-01111 [EE FF

10000-160001 [FO F1

building a (direct-mapped) cache

read byte at 010117 exactly one place for each address

spread out what can go in a block

Cache Memory

index value addresses bytes
00 00 00 --+00000-00001 00 11
01 00 00 --+00010-00011 22 33
10 00 00 - >00100-00101 [55 55
11 00 00 [->00110-00111 |66 77
1N \'01000-01001 88 99

cache block: 2 bytes ‘\\\\\@1@1@_@1011 A BB
direct-mapped 2%01100-01101 (CC DD
'91110-01111 [EE FF

10000-10001 FO F1

building a (direct-mapped) cache

read byte at 010117 exactly one place for each address

spread out what can go in a block

Cache Memory

index value addresses bytes
00 00 00 §--+~0000O-00001 [00 11
01 00 00 j--+~00010-00011 22 33
10 00 00 i -+~00100-00101 [55 55
11 00 00 [->00110-00111 |66 77
N \'01000-01001 88 99

cache block: 2 bytes ‘\\\\\@1@1@_@1911 AA BB
direct-mapped 2%01100-01101 |CC DD
‘91110-01111 [EE FF

10000-10001 [FO F1

building a (direct-mapped) cache

read byte at 010117

Cache Memory

index valid value addresses bytes

00 0 1 00 00 | Vs this even a value? +1
01 60— 00 UUUIU-UUUIL [ZZ 33

16 9 | need extra bit to know P~00101 55 55

11 0] (VAVARVAV) vorrv-00111 66 77

01000-01001 |88 99
cache block: 2 bytes 01010-01011 IAA BB
direct-mapped 01100-01101 [CC DD

01110-01111 EE FF
10000-10001 [FO F1

building a (direct-mapped) cache

read byte at 010117

invalid, fetch
Cache Memory
index valid value addresses bytes
00 0] 00 00 00000-00001 00 11
01 1 AA BB 00010-00011 22 33
10 (0] 00 00 00100-00101 55 55
11 0] 00 00 00110-00111 66 77
01000-01001 88 99
cache block: 2 bytes 01010-01011 |AA BB
direct-mapped 01100-01101 [CC DD
01110-01111 EE FF
10000-10001 FO F1

building a (direct-mapped) cache

read byte at 010117

l\/lnmr\r\l

value from 01010 or 000107

S Uytres
/; 00000-00001 00 11

00010-00011 22 33

00100-00101 |55 55

invalid, fetch

Cache
index valid tag value
00 0 00 | 00 00
01 1 01 | AABB
10 0 | o0x]00 00
11 0

need tag to know [00110-00111 |66 77

cache block: 2 bytes
direct-mapped

01000-01001 88 99
01010-01011 AA BB
01100-011061 |[CC DD
01110-01111 EE FF
10000-10001 [FO F1

building a (direct-mapped) cache

read byte at 010117

invalid, fetch
Cache Memory
index valid tag value addresses bytes
00 0] 00 |00 00 00000-00001 00 11
01 1 01 | AABB 00010-00011 22 33
10 (0] 00 |00 00 00100-00101 55 55
11 0] 00 |00 00 00110-00111 66 77
01000-01001 88 99
cache block: 2 bytes 01010-01011 AA BB
direct-mapped 01100-01101 [CC DD
01110-01111 EE FF
10000-10001 FO F1

cache operation (read)

0b1110010
E valid tag data
. 1 10 00 11 22 33
index
-1 11 B4 B5 B6 B7

cache operation (read)

651110016
E valid tag data
1 10 00 11 22 33
index
tag
'----1 11 B4 B5 B6 B7
'

Yy
>
=
O

is hit? (1)

cache operation (read)

0b1110010—— offset

E valid tag data
1 10 00 11 22 33
index
tag
---1 11 B4 B5 B6 B7
' '—gy data (B6)

Q

AND is hit? (l)

Yy

Tag-Index-Offset (TI10)

address 001111 (stores value OxFF)

cache tag index offset
2 byte blocks, 4 sets 777 777 777
2 byte blocks, 8 sets 777 777 77
4 byte blocks, 2 sets 777 777 777
2 byte blocks, 4 sets 2 byte blocks, 8 sets
index valid tag value index valid tag value
00 1 000 00 11 000 1 00 00 11
01 1 001 AA BB 001 1 01 F1F2
10 0 - —— 010 0 -- -—--
11 1 001 EE FF 011 0 - ——
4 byte blocks, 2 sets 100 © — —
index valid tag value 161 1 90 AA BB
0 1 00 00 11 22 33 110 © — —
1 1 01 CC DD EE FF 111 1 90 EEFF

Tag-Index-Offset (TI10)

address 001111 (stores value OxFF)
cache

tag

2 byte blocks, 4 sets 777
2 byte blocks, 8 sets 777
4 byte blocks, 2 sets 777

index
00
01
10
11

index
0
1

2 byte blocks, 4 sets

index offset
771
7?71

77

2 byte blocks, 8 sets

valid tag value ind sealicd tao salue
1 o
1 | 000 | 0011 2 = 2" bytes in block 011
1 001 AA BB . . F1 F2
3 I E— 1 bit to say which byte ——
1 001 EE FF 011 9 — —
100 0 . —
4 byte blocks, 2 sets
. 101 1 00 AA BB
valid tag value 110 o
1 00 00 11 22 33 i - — —_—
1 01 CC DD EE FF

Tag-Index-Offset (TI10)

address 001111 (stores value OxFF)

cache tag

index offset

2 byte blocks, 4 sets 777 777 1
2 byte blocks, 8 sets 777 777 1
4 byte blocks, 2 sets 777 777 11
2 byte blocks, 4 sets 2 byte blocks, 8 sets
index valid tag value index valid tag value
00 1 000 00 11 000 1 00 00 11
01 1 001 AA BB 001 1 01 F1F2
10 0 52 . A - ——
» —T1 4 = 27 bytes in plock 5 B
A byt 2 bits to say which byte o | - | —-—-
index valid tag vé\/ﬁe I 1 00 AA BB
0 1 00 00 11 22 33 110 © — —
1 1 01 CC DD EE FF 111 1 90 EEFF

Tag-Index-Offset (TI10)

address 001111 (stores value OxFF)

cache tag index offset
2 byte blocks, 4 sets 777 11 1
2 byte blocks, 8 sets 777 1
4 byte blocks, 2 sets 777 1 11
2 byte blocks, 4 sets 2 byte blocks, 8 sets
index valid tag value index valid tag value
00 1 000 00 11 oYoYol [1+ | aa 00 11
01 1 001 | AABB 22 — 4 sets F1F2
10 0 - ——) . -—--
11 1 001 EE FF 2 bits to |ndeX set —
4 byte blocks, 2 sets 100 © — —
. . 101 1 00 AA BB
index valid tag value
0 1 00 00 11 22 33 110 © — —
111 1 00 EE FF

1 1 01

CC DD EE FF

Tag-Index-Offset (TI10)

address ©01111 (stores value OxFF)
index offset

cache

index
00
01
10
11

index
0

tag
2 byte blocks, 4 sets 777 11
2 byte blocks, 8 sets 777 111
4 byte blocks, 2 sets 777 1
2 byte blocks, 4 sets
valid tag value index
1 000 00 11 000
1 001 AA BB 001
0 — — 010
L 129 = 8 sets oL
4 3 bits to index set 101
val =
1 00 00 11 22 33 110
1 01 CC DD EE FF 111

1

1
1
11
2 byte blocks, 8 sets
valid tag value
1 00 00 11
1 01 F1F2
0 — —_— ——
0 J— —_— ——
0 J— _
1 00 AA BB
0 __ [
1 00 EE FF

Tag-Index-Offset (TI10)

address ©01111 (stores value OxFF)
index offset

cache

tag

2 byte blocks, 4 sets 777
2 byte blocks, 8 sets 777
4 byte blocks, 2 sets 777

index
00
01
10
11

index
0
1

2 byte blocks, 4 sets

valid tag value
1 000 00 11
1 001 AA BB
0 —_ —_———
1 001 EE FF

4 byte blocks, 2 sets

11 1

111 1

1 11

2 byte blocks, 8 sets

index valid tag value
000 1 00 00 11
001 1 01 F1F2
010 0 —- -— -
(0] 1 -
1427 = 2 sets -

¥ 1 bit to index set [B8

valid tag value g
1 00 00 11 22 33 11\1} [‘; - -
1 01 CC DD EE FF |

Tag-Index-Offset (TI10)

address ©01111 (stores value OxFF)
index offset

cache tag

2 byte blocks, 4 sets 001
2 byte blocks, 8 sets 00

tag — whatever is left over

00 1 000 00 11
01 1 001 AA BB
10 0 — ——
11 1 001 EE FF

4 byte blocks, 2 sets
index valid tag value
0 1 00 00 11 22 33

1 1 01 CC DD EE FF

111
4 byte blocks, 2 sets 001 1

index
000
001
010
011
100
101
110
111

2 byte blocks, 8 sets
valid tag value
1 00 00 11
1 01 F1F2
0 R —_— ——
0 R —_— ——
0 —_— —_— ——
1 00 AA BB
0 R —_— ——
1 00 EE FF

Tag-Index-Offset formulas (direct-mapped
only)

m memory addreses bits (Y86-64: 64)
S=2° number of sets

s (set) index bits

B=2" block size

b (block) offset bits

t=m—(s+0b) tag bits
C=BxS cache size (if direct-mapped)

example access pattern (1)

address (hex)

result |

00000000 (00)

00000001 (01)

01100011 (63)

01100001 (61)

01100010 (62)

00000000 (00)

01100100 (64)

index

00

01

10

11

2 byte blocks, 4 sets

valid

tag

value

0

0

example access pattern (1)

2 byte blocks, 4 sets

address (hex) |result | index |valid| tag value

00000000 (00)
00000001 (01)
01100011 (63)
01100001 (61)
01100010 (62)
00000000 (00)
01100100 (64)

m = 8 bit addresses
S =4 = 2% sets
s = 2 (set) index bits

00 0
01 0
10 0
11 0

B = 2 = 2° byte block size
b =1 (block) offset bits
t=m— (s+b) =5 tag bits

example access pattern (1)

2 byte blocks, 4 sets

address (hex) |result | index |valid| tag value

00000000 (00)
00000001 (01)
01100011 (63)
01100001 (61)
01100010 (62)
00000000 (00)
01100100 (64)
tag indexoffset

m = 8 bit addresses
S =4 = 2% sets
s = 2 (set) index bits

00 0
01 0
10 0
11 0

B = 2 = 2° byte block size
b =1 (block) offset bits
t=m— (s+b) =5 tag bits

example access pattern (1)

2 byte blocks, 4 sets

address (hex) result index |valid| tag value
00000000 (00) |miss 00 1 | 00000 mem[Ox00]
00000001 (01) mem[0x01]
01100011 (63) o1 0

01100001 (61)

01100010 (62) 10 0

00000000 (00)

01100100 (64)

. 11 (C]

tag indexoffset

m = 8 bit addresses B = 2 = 2° byte block size

S =4 =2 sets b =1 (block) offset bits

s = 2 (set) index bits t =m — (s+b) =5 tag bits

example access pattern (1)

2 byte blocks, 4 sets

address (hex) result index |valid| tag value
00000000 (00) |miss mem[Ox00]
00 1 |00000
00000001 (01) |hit mem[0x01]
01100011 (63) o1 0
01100001 (61)
01100010 (62) 10 0
00000000 (00)
01100100 (64)
. 11 (0]
tag indexoffset
m = 8 bit addresses B = 2 = 2° byte block size
S =4 =2 sets b =1 (block) offset bits

s = 2 (set) index bits t =m — (s+b) =5 tag bits

example access pattern (1)

2 byte blocks, 4 sets

address (hex) result index |valid| tag value

00000000 (00) |miss mem[Ox00]
00 1 |00000

00000001 (01) |hit mem[Ox01]

01100011 (63) |miss mem[Ox62]
01 1 11

01100001 (61) 91100 mem[Ox63]

01100010 (62)

10 0
00000000 (00)

01100100 (64)

. 11 (0]
tag indexoffset

m = 8 bit addresses B = 2 = 2" byte block size
S=4=2° .SGtS . b =1 (block) offset bits
s = 2 (set) index bits t =m — (s+b) =5 tag bits

example access pattern (1)

2 byte blocks, 4 sets

address (hex) result index |valid| tag value

00000000 (00) |miss mem[Ox60]
00 1 |01100

00000001 (01) |hit mem[Ox61]

01100011 (63) |miss mem[Ox62]
01 1 11

01100001 (61) |miss 91100 mem[Ox63]

01100010 (62)

10 0
00000000 (00)

01100100 (64)

. 11 (0]
tag indexoffset

m = 8 bit addresses B = 2 = 2" byte block size
S=4=2° .SGtS . b =1 (block) offset bits
s = 2 (set) index bits t =m — (s+b) =5 tag bits

example access pattern (1)

2 byte blocks, 4 sets

address (hex) result index |valid| tag value
00000000 (00) |miss mem[0Xx60]
00 1 |01100
00000001 (01) |hit mem[Ox61]
01100011 (63) |miss mem[Ox62]
01 1 11
01100001 (61) |miss 91100 mem[Ox63]
01100010 (62) it 10 0
00000000 (00)
01100100 (64)
. 11 (0]
tag indexoffset
m = 8 bit addresses B = 2 = 2° byte block size
S =4 =2 sets b =1 (block) offset bits

s = 2 (set) index bits t =m — (s+b) =5 tag bits

example access pattern (1)

2 byte blocks, 4 sets

address (hex) result index |valid| tag value

00000000 (00) |miss mem[Ox00]
00 1 |0000

00000001 (01) hit © mem[Ox01]

01100011 (63) |miss mem[Ox62]
01 1

01100001 (61) |miss 01100 mem[0Ox63]

01100010 (62) |hit 10 0

00000000 (00) |miss

01100100 (64) 11 0

tag indexoffset

m = 8 bit addresses B = 2 = 2" byte block size
S=4=2° .SGtS . b =1 (block) offset bits
s = 2 (set) index bits t =m — (s+b) =5 tag bits

example access pattern (1)

address (hex) result

index

00000000 (00) |miss

00

00000001 (01) |hit

01100011 (63) |miss

01100001 (61) |miss

01

01100010 (62) |hit

10

00000000 (00) |miss

01100100 (64) |miss

11

tag indexoffset

m = 8 bit addresses
S =4 = 2% sets
s = 2 (set) index bits

2 byte blocks, 4 sets
valid| tag value
mem[Ox00]
1 |00000 mem[Ox01]
mem[0x62]
1 |011060 mem[0Ox63]
mem[0x64]
1 |0611060 mem[Ox65]
0

B = 2 = 2° byte block size
b =1 (block) offset bits
t=m— (s+b) =5 tag bits

example access pattern (1)

address (hex) result

index

00000000 (00) |miss

00

00000001 (01) |hit

01100011 (63) |miss

01100001 (61) |miss

01

01100010 (62) |hit

10

00000000 (00) |miss

01100100 (64) |miss

11

tag indexoffset

m = 8 bit addresses
S =4 = 2% sets
s = 2 (set) index bits

2 byte blocks, 4 sets
valid| tag value
mem[Ox00]
1 |00000 mem[Ox01]
mem[0x62]
1 |011060 mem[0Ox63]
mem[0x64]
1 |011060 mem[Ox65]
0

B = 2 = 2° byte block size
b =1 (block) offset bits
t=m— (s+b) =5 tag bits

example access pattern (1)

2 byte blocks, 4 sets

address (hex) result index |valid| tag value
00000000 (00) |miss mem[0x00]
00 1 |00000

00000001 (01) |hit mem[Ox01]

01100011 (63) |miss mem[Ox62]
. 01 1 (01100

01100001 (61) |miss mem[Ox63]

01100010 (62) |hit 10 . | it s [mem[0Xx64]

00000000 (00) |miss miss caused by conflict P51

01100100 (64) |miss

. 11 (0]
tag indexoffset

m = 8 bit addresses
S =4 = 2% sets
s = 2 (set) index bits

B = 2 = 2° byte block size
b =1 (block) offset bits
t=m— (s+b) =5 tag bits

exercise

address (hex)

result

00000000 (00)

00000001 (01)

01100011 (63)

01100001 (61)

01100010 (62)

00000000 (00)

01100100 (64)

index

00

01

10

11

4 byte blocks, 4 sets

valid

tag

value

exercise

address (hex) result index
00000000 (00)

00
00000001 (01)
01100011 (63)

01
01100001 (61)
01100010 (62) 10
00000000 (00)
01100100 (64) 11

4 byte blocks, 4 sets

valid

tag

value

up into tag/index/offset?

how is the address 61 (01100001) split

b block offset bits;
B = 2° byte block size;

s set index bits; S = 2° sets ;

t =m — (s +b) tag bits (leftover)

exercise

address (hex)

result

index

00000000 (00)

00

00000001 (01)

01100011 (63)

01100001 (61)

01

01100010 (62)

10

00000000 (00)

01100100 (64)

11

m = 8 bit addresses

S =4 = 2° sets

s = 2 (set) index bits

B = 4 = 2° byte block size
b = 2 (block) offset bits
t=m— (s+b) =4 tag bits

4 byte blocks, 4 sets

valid

tag

value

exercise

address (hex) result index |valid| tag
00000000 (00)
00
00000001 (01)
01100011 (63)
01
01100001 (61)
01100010 (62) 1o
00000000 (00)
01100100 (64)
- 11
tag index offset
m = 8 bit addresses B = 4 = 2" byte block size

S =4 = 2° sets

4 byte blocks, 4 sets

value

b = 2 (block) offset bits
s = 2 (set) index bits t =m — (s+b) = 4 tag bits

exercise

4 byte blocks, 4 sets

valid

tag

value

address (hex) result index
00000000 (00)

00
00000001 (01)
01100011 (63)

01
01100001 (61)
01100010 (62)

10
00000000 (00)
01100100 (64) 11

tag index offset

exercise: how many accesses are hits?

exercise

address (hex)

result

00000000 (00)

miss

00000001 (01)

01100011 (63)

01100001 (61)

01100010 (62)

00000000 (00)

01100100 (64)

tag index offset

index

00

01

10

11

4 byte blocks, 4 sets

valid| tag value
mem[Ox00] -
1 0000 mem[Ox03]
0

10

exercise

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

01100001 (61)

01100010 (62)

00000000 (00)

01100100 (64)

tag index offset

index

00

01

10

11

4 byte blocks, 4 sets

valid| tag value
mem[Ox00] -
1 0000 mem[0Ox03]
0

10

exercise

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

miss

01100001 (61)

01100010 (62)

00000000 (00)

01100100 (64)

tag index offset

index

00

01

10

11

4 byte blocks, 4 sets

valid| tag value
mem[Ox60] -
1 0110 mem[Ox63]
0

10

exercise

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

miss

01100001 (61)

hit

01100010 (62)

00000000 (00)

01100100 (64)

tag index offset

index

00

01

10

11

4 byte blocks, 4 sets

valid| tag value
mem[Ox60] -
1 0110 mem[0x63]
0

10

exercise

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

miss

01100001 (61)

hit

01100010 (62)

hit

00000000 (00)

01100100 (64)

tag index offset

index

00

01

10

11

4 byte blocks, 4 sets

valid| tag value
mem[Ox60] -
1 0110 mem[0x63]
0

10

exercise

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

miss

01100001 (61)

hit

01100010 (62)

hit

00000000 (00)

miss

01100100 (64)

tag index offset

index

00

01

10

11

4 byte blocks, 4 sets

valid| tag value
mem[Ox00] -
1 0000 mem[Ox03]
0

10

exercise

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

miss

01100001 (61)

hit

01100010 (62)

hit

00000000 (00)

miss

01100100 (64)

miss

tag index offset

index

00

01

10

11

4 byte blocks, 4 sets

valid| tag value
mem[Ox00] -
1 0000 mem[0Ox03]
mem[Ox64] -
1 0110 mem[OXx67]

10

exercise

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

miss

01100001 (61)

hit

01100010 (62)

hit

00000000 (00)

miss

01100100 (64)

miss

tag index offset

index

00

01

10

11

4 byte blocks, 4 sets

valid| tag value
mem[Ox00] -
1 0000 mem[0Ox03]
mem[Ox64]-
1 0110 mem[OXx67]

10

example access pattern (1)

2 byte blocks, 4 sets

address (hex) result index |valid| tag value
00000000 (00) |miss mem[0x00]
00 1 |00000

00000001 (01) |hit mem[Ox01]

01100011 (63) |miss mem[Ox62]
. 01 1 (01100

01100001 (61) |miss mem[Ox63]

01100010 (62) hit 10 1+ lni10a | Mem[Ox64]

00000000 (00) |miss miss caused by conflict P51

01100100 (64) |miss

. 11 (0]
tag indexoffset

m = 8 bit addresses
S =4 = 2% sets
s = 2 (set) index bits

B = 2 = 2° byte block size
b =1 (block) offset bits
t=m— (s+b) =5 tag bits

11

adding associativity

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag value valid| tag value
0 0 0
1 0 0

multiple places to put values with same index
avoid conflict misses

adding associativity

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag value valid| tag value

0 0 set 0 0

1 0 set 1 0

adding associativity

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag value valid| tag value
0 0 0

way 0 way 1 ——
1 (0] | 0 |

12

adding associativity

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag value valid| tag value
0 0 0
1 0 0

m = 8 bit addresses B = 2 = 2" byte block size
S =2=2"sets b =1 (block) offset bits
s =1 (set) index bits t =m — (s +b) = 6 tag bits

12

adding associativity

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag value valid| tag value
mem[Ox00]

(0] 1 |000000 mem[0x01] (C]

1 0 0

address (hex)

result

00000000 (00)

miss

00000001 (01)

01100011 (63)

01100001 (61)

01100010 (62)

00000000 (00)

01100100 (64)

tac indexoffset

12

adding associativity

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag value valid| tag value
mem[Ox00]

(0] 1 |0000060 mem[Ox01] (C]

1 0 0

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

01100001 (61)

01100010 (62)

00000000 (00)

01100100 (64)

tac indexoffset

12

adding associativity

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag

value

valid

tag

value

0 1 |0000060

mem[Ox00]
mem[Ox01]

0

1 1 |011000

mem[Ox62]
mem[0x63]

0

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

miss

01100001 (61)

01100010 (62)

00000000 (00)

01100100 (64)

tac indexoffset

12

adding associativity

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag

value

valid

tag

value

0 1 |0000060

mem[Ox00]
mem[Ox01]

1

011000

mem[Ox60]
mem[Ox61]

1 1 |011000

mem[0x62]
mem[0x63]

0

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

miss

01100001 (61)

miss

01100010 (62)

00000000 (00)

01100100 (64)

tac indexoffset

12

adding associativity

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag

value

valid

tag

value

0 1 |0000060

mem[Ox00]
mem[Ox01]

1

011000

mem[Ox60]
mem[0Ox61]

1 1 |011000

mem[0x62]
mem[0x63]

0

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

miss

01100001 (61)

miss

01100010 (62)

hit

00000000 (00)

01100100 (64)

tac indexoffset

12

adding associativity

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag

value

valid

tag

value

0 1 |0000060

mem[Ox00]
mem[Ox01]

1

011000

mem[Ox60]
mem[0Ox61]

1 1 |011000

mem[0x62]
mem[0x63]

0

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

miss

01100001 (61)

miss

01100010 (62)

hit

00000000 (00)

hit

01100100 (64)

tac indexoffset

12

adding associativity

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag

value

valid

tag

value

0 1 |0000060

mem| 0x00 |
mem[Ox01]

1

011000

memLﬁxEGl

mem[0Ox61]

1 1 |011000

mem[0x62]
mem[0x63]

0

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

miss

01100001 (61)

migs

01100010 (62)

hit| h€e

00000000 (00)

ds to replace block in set 0!

hit

01100100 (64)

miss

tac indexoffset

12

adding associativity

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag

value

valid

tag

value

0 1 |0000060

mem[Ox00]
mem[Ox01]

1

011000

mem[Ox60]
mem[0Ox61]

1 1 |011000

mem[0x62]
mem[0x63]

0

address (hex)

result

00000000 (00)

miss

00000001 (01)

hit

01100011 (63)

miss

01100001 (61)

miss

01100010 (62)

hit

00000000 (00)

hit

01100100 (64)

miss

tac indexoffset

12

cache operation (associative)

iiiiiiié(:)ii‘ offset
. [valid[tag [data |[validltag |data
v 1]10 [e@11][1 o0 |AABB
|ndex
8 T 11 BaB5| 1 01 13344
data
(B5)
' '—’}E)J
—Q>AND} r" *
= Jor >— is hit? (1)
AND

13

cache operation (associative)

tiilgi:l:égj)ij.‘ offset
. [valid[tag [data |[validltag |data
v 1]10 [e@11][1 o0 |AABB
index
8 L FTTTI1 BAB51 1 01 3344
data
(B5)
; \4
=)J
\:_\
ZIAND ya o
= Jor >— is hit? (1)
AND

13

cache operation (associative)

iiiiiiié(:)ii‘ offset
. [valid[tag [data |[validltag |data
v 1]10 [e@11][1 o0 |AABB
index
8 L FTTTI1 BAB51 1 01 3344
o —
KTi.*‘\\ .
@ =/-: m
AND

data
(B5)

-

is hit? (1)

13

associative lookup possibilities

none of the blocks for the index are valid

none of the valid blocks for the index match the tag
something else is stored there

one of the blocks for the index is valid and matches the tag

14

associativity terminology

direct-mapped — one block per set

E-way set associative — E' blocks per set
E ways in the cache

fully associative — one set total (everything in one set)

15

Tag-Index-Offset formulas (complete)

m

E

S =2°

S

B=2

b
t=m—(s+Db)
C=BxSxE

memory addreses bits (Y86-64: 64)
number of blocks per set (“ways”)
number of sets

(set) index bits

block size

(block) offset bits

tag bits

cache size (excluding metadata)

16

Tag-Index-Offset exercise

memory addreses bits (Y86-64: 64)
number of blocks per set (“ways")

= 2° number of sets
(set) index bits
—2b block size

(block) offset bits
m—(s+0b) tag bits
B x S x E cache size (excluding metadata)
My desktop:
L1 Data Cache: 32 KB, 8 blocks/set, 64 byte blocks
L2 Cache: 256 KB, 4 blocks/set, 64 byte blocks
L3 Cache: 8 MB, 16 blocks/set, 64 byte blocks

QTTHm® 3

Divide the address O©x34567 into tag, index, offset for each cache.

17

T-1-O exercise: L1

quantity value for L1

block size (given) B = 64Byte

B = 2" (b: block offset bits)

18

T-1-O exercise: L1

quantity

value for L1

block size (given)

B = 64Byte

block offset bits

B = 2" (b: block offset bits)
b=06

18

T-1-O exercise: L1

quantity value for L1

block size (given) B = 64Byte

B = 2" (b: block offset bits)
block offset bits b=26

blocks/set (given) E =38

cache size (given) C =32KB=FE x B x S

18

T-1-O exercise: L1

quantity

value for L1

block size (given)

B = 64Byte

block offset bits

B = 2" (b: block offset bits)
b=06

blocks/set (given) E =38
cache size (given) C =32KB=FE x B x S
S = ¢ (S: number of sets)

B x FE

18

T-1-O exercise: L1

quantity

value for L1

block size (given)

B = 64Byte

block offset bits

B = 2" (b: block offset bits)
b=06

blocks/set (given)

cache size (given)

number of sets

E =28
C=32KB=ExBxS

C
S = B E (S: number of sets)
o_ _ 32KB

072 64
64Byte x 8

18

T-1-O exercise: L1

quantity value for L1
block size (given) B = 64Byte
B = 2" (b: block offset bits)
block offset bits b =16
blocks/set (given) E =38
cache size (given) C =32KB=FE x B x S
S = BSE (S: number of sets)
32KB

number of sets

=2 _—64
8 64Byte x 8

set index bits

S = 2° (s: set index bits)
s = log,(64) =6

18

T-1-O results
11 L2 L3

sets 64 1024 8192
block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

19

T-1-0: splitting

L1 L2 L3
block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

3 4 5 6 I
0011 0100 0601601 060110 0111

Ox34567:

bits 0-5 (all offsets): 100111 = Ox27

20

T-1-0: splitting

L1 L2 L3
block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

3 4 5 6 I
0011 0100 0601601 060110 0111

Ox34567:

bits 0-5 (all offsets): 100111 = Ox27

20

T-1-0: splitting

L1 L2 L3
block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

3 4 5 6 I
0011 0100 060101 060110 0111

Ox34567:

bits 0-5 (all offsets): 100111 = Ox27

L1:

bits 6-11 (L1 set): 01 0101 = 0x15
bits 12- (L1 tag): 0x34

20

T-1-0: splitting

L1 L2 L3
block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

3 4 5 6 I
0011 0100 01601 6110 0111

Ox34567:

bits 0-5 (all offsets): 100111 = Ox27

L1:

bits 6-11 (L1 set): 61 0101 = 0x15
bits 12- (L1 tag): 0x34

20

T-1-0: splitting

L1 L2 L3
block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

3 4 5 6 I
0011 0100 0101 060110 0111

Ox34567:

bits 0-5 (all offsets): 100111 = Ox27

L2:

bits 6-15 (set for L2): 01 0001 0101 = 0x115
bits 16-: Ox3

20

T-1-0: splitting

L1 L2 L3
block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

3 4 5 6 I
0011 0100 0601601 060110 0111

Ox34567:

bits 0-5 (all offsets): 100111 = Ox27

L2:

bits 6-15 (set for L2): 01 0001 0101 = 0x115
bits 16-: Ox3

20

T-1-0: splitting

L1 L2 L3
block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

3 4 5 6 I
0011 0100 0101 06110 0111

Ox34567:

bits 0-5 (all offsets): 100111 = Ox27

L3:

bits 6-18 (set for L3): ®© 1101 0001 0101 = 0xD15
bits 18-: Ox0

20

exercise

4 byte blocks, 2 sets

index |V | tag value V| tag value LRU
0 0 0
1 0 0

address (hex)

hit? |

00000000 (00)

00000001 (01)

00001010 (0A)

00100001 (21)

00001100 (0C)

00000011 (02)

00100011 (23)

21

exercise 4 byte blocks, 2 sets

index |V | tag value V| tag value LRU
0 0 0
1 0 0

address (hex) _|hit? | |how s the address 21 (00100001) split

00000000 (00)))
00000001 (01) || up into tag/index/offset?

00001010 (0A) b block offset bits;

00100001 (21) B = 2 byte block size;
00001100 (6C) ‘ s set index bits; S = 2° sets;
00000011 (62) t =m — (s +b) tag bits (leftover)

00100011 (23)

exercise

4 byte blocks, 2 sets

index |V | tag value V| tag value LRU
0 0 0
1 0 0

address (hex)

hit? |

00000000 (00)

00000001 (01)

00001010 (0A)

00100001 (21)

00001100 (0C)

00000011 (02)

00100011 (23)

tag index offset

21

exercise

4 byte blocks, 2 sets

index |V | tag value V| tag value LRU
0 0 0
1 0 0

address (hex)

hit? |

00000000 (00)

00000001 (01)

00001010 (0A)

00100001 (21)

00001100 (0C)

00000011 (02)

00100011 (23)

tag index offset

exercise: how many accesses are hits?
what is the final state of the cache?

21

exercise

4 byte blocks, 2 sets

index |V | tag value V| tag value LRU
M[0x00] M[0x01]

1 0 0

address (hex) hit?

exercise: how many accesses are hits?

00000000 (00)

miss

00000001 (01)

what is the final state of the cache?

00001010 (0A)

00100001 (21)

00001100 (0C)

00000011 (02)

00100011 (23)

tag index offset

21

exercise

4 byte blocks, 2 sets

index |V | tag

value

Y

tag

value

LRU

0 1|00000

M[0x00] M[0x01]
M[0x02] M[0x03]

1

00001

M[0x08] M[0x09]
M[0x0A] M[0x0B]

way 0

1 0

0

address (hex)

hit?

00000000 (00)

miss

00000001 (01)

hit

00001010 (0A)

miss

00100001 (21)

00001100 (0C)

00000011 (02)

00100011 (23)

tag index offset

21

exercise

4 byte blocks, 2 sets

index |V | tag

value

Y

tag

value

LRU

0 1|00100

M[0x20] M[0x21]
M[0x22] M[0x23]

1

00001

M[0x08] M[0x09]
M[0x0A] M[0x0B]

way 1

1 0

0

address (hex)

hit?

00000000 (00)

miss

00000001 (01)

hit

00001010 (0A)

miss

00100001 (21)

miss

00001100 (0C)

miss

00000011 (02)

00100011 (23)

tag index offset

21

exercise

4 byte blocks, 2 sets

index |V | tag

value V| tag

value

LRU

0 100100

M[0x20] M[0x21]
M[0x22] M[0x23] 1|00000

M[0x00] M[0x01]
M[0x02] M[0x03]

way 0

1 100000

M[0x0C] M[0x0D]
M[ox0E] M[oxoF] | | @

way 1

address (hex)

hit?

00000000 (00)

miss

00000001 (01)

hit

00001010 (0A)

miss

00100001 (21)

miss

00001100 (0C)

miss

00000011 (02)

miss

00100011 (23)

tag index offset

21

exercise

4 byte blocks, 2 sets

index |V | tag value V| tag value LRU
M[0x20] M[0x21] M[0x00] M[0x01]

0 1100100} moxoo] Mlox23] | |1 (00000 wjox02] Moxo3] | v
M[0x0C] M[0x0D]

address (hex)

hit?

00000000 (00)

miss

00000001 (01)

hit

00001010 (0A)

miss

00100001 (21)

miss

00001100 (0C)

miss

00000011 (02)

miss

00100011 (23)

hit

tag index offset

21

backup slides

22

cache miss types

compulsory (or cold) — first time accessing something
doesn’t matter how big/flexible the cache is

conflict — sets aren't big/flexible enough
a fully-associtive (1-set) cache of the same size would have done better

capacity — cache was not big enough

23

replacement policies

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag value ||valid| tag value
mem[Ox00] mem[Ox60]

0 1 |000000 mem[0x01] 1 |011000 mem[0x61]
mem[®x62]

laddress (hex) [result \

000

how to decide where to insert 0x647

000vuuur (UuLy

Tt

01100011 (63)

miss

01100001 (61)

miss

01100010 (62)

hit

00000000 (00)

hit

01100100 (64)

miss

24

replacement policies

2-way set associative, 2 byte blocks, 2 sets

index |valid| tag value valid| tag value LRU
mem[Ox00] mem[Ox60]

0 1 |000000|nemiox01]|| 1 |011000cmroxs1]l| L
mem[Ox62]

address (hex) [result |

00000000 (00) \mi track which block was read least recently

00000001 (01) |hit

91100011 (63) |mi updated on every access

01100001 (61) |miss

01100010 (62) |hit

00000000 (00) |hit

01100100 (64) |miss

24

example replacement policies

least recently used and approximations
take advantage of temporal locality

exact: [log,(E!)] bits per set for E-way cache
good approximations: F to 2FE bits

first-in, first-out
counter per set — where to replace next

(pseudo-)random
no extra information!

25

