Cache Performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concept

Cache

Memory

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
1 2 3
4 5 6 7
9 10 11
12 13 14 15

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

arrays and cache misses (2)

int array[1024]; // 4KB array

int even_sum = 0, odd_sum = 0;

for (int 1 = 0; 1 < 1024; 1 += 2)
even_sum += array[i1 + 0];

for (int 1 = 0; 1 < 1024; i += 2)
odd_sum += array[1 + 1];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks? Would a set-associtiave cache be better?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

mapping of sets to memory (direct-mapped)

DM cache memory
set 0 —

set K —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

mapping of sets to memory (direct-mapped)

DM cache memory
set 0 —

values which would be stored in same set
set K — (cache size) bytes apart

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

mapping of sets to memory (direct-mapped)

DM cache memory
set 0 —

set K —

<—— array[0] here

array[X] where
X = K -(array elements per cache block)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

mapping of sets to memory (direct-mapped)

DM cache memory
set 0 —

set K —

<—— array[0] here

array[X]
X = (cache size / array element size)

elements (cache size) bytes apart in array
beware conflict misses!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

mapping of sets to memory (3-way)

3-way set assoc. cache memory
set 0 —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

mapping of sets to memory (3-way)

3-way set assoc. cache memory
set 0 —

«—— array[0]

array[X] —
way size

where X =

array element size

accesses (way size) bytes apart in array?
beware conflict misses!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C and cache misses (3)

typedef struct {
int a_value, b_value;
int boring_values[126];
} item;
item 1tems[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; 1 < 8; ++1)
a_sum += ditems[i].a_value;
for (int 1 = 0; 1 < 8; ++1)
b_sum += dtems[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10

Structure Representation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

r
struct rec {
int a[4]; v
struct rec *next;
}; 0 16 24 32

1

C and cache misses (3)

typedef struct {

int boring_values[126]; 1A [11.BV[0]

item items[8]; // 4 KB array

int a_sum = 0, b_sum = 0;

for (int i = 0; i < 8; ++1)
a_sum += 1items[i].a_value;

for (int 1 = 0; 1 < 8; ++1)
b_sum += 1items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

T

219

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Each block
associated the first
half of the array has
a unique spot in
memory

13

Cache Optimization Techniques

for (j =0; j < 3:

Array in row major order

X[0][0]

X[1][0]

j = j+1){ for (i = 0; i < 3: i = i+1){
for(i=0; i< 3; 1 i+ 1){ for(j=0; 3 <3;, J=3+ 1){
x[1][3] = 2*x[i][]]~ x[1]1[3] = 2*x[i][]];
} }
}
Inner loop analysis
These two loops compute the same result
X[o][1] X[0][2]
X[1101] X[11[2]
0x0 - 0x3 |Ox4 - 0x7 |0x8-0x11 [Ox12-0x15 |[Ox16 - 0x19 [0x20-0x23
X[01[0] X011 [X[0li21 [X[io] X[(11[1] X[1112] _

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14

Cache Optimization Techniques

for (J = 0; j < 3: j = j+1) { for (i = 0; i < 3: 1 = i+1){
for(i=0; i<3; 1i=131i+1){ for(j=0; 3 <3;, J=3+ 1){
x[1]1[3]1 = 2*x[1][3]; x[11[3] = 2*x[i][]];
} }
} }

These two loops compute the same result

int *x = malloc (N*N) ;
Array in row major order for (i =0; i < 3: 4 = i+l1){
for(=0, j <3; 3J=3+ 1){
X[i*N +3j] = 2*x[i*N + j];
X[0][0] [X[OI[1] [X[O][2] y

X(1001 |X((1] |X[1102] }

0x0 - 0x3 |0x4 - Ox7 [0x8-0x11 J0Ox12-0x15 |[0x16 - 0x19 |0x20-0x23

X[0][0] XIJ[1] [X[0ll2] |X[11[0] X[1101] X[1112] _

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15

Matrix Multiplication Refresher

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

16

Miss Rate Analysis for Matrix Multiply

* Assume:
 Block size = 32B (big enough for four doubles)
* Matrix dimension (N) is very large
» Cache is not even big enough to hold multiple rows

* Analysis Method:

» Look at access pattern of inner loop

k

i X

C A B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

17

Layout of C Arrays in Memory (review)

 C arrays allocated in row-major order
» each row in contiguous memory locations

 Stepping through columns in one row:
e for (i = 0; 1 < N; i++)
sum += a[0][1];
* accesses successive elements
- if block size (B) > sizeof(a;;) bytes, exploit spatial locality
* miss rate = sizeof(a;;) / B
* Stepping through rows in one column:
e for (1 = 0; 1 < n; 1i++)
sum += al[1][0];
 accesses distant elements

 no spatial locality!
* miss rate = 1 (i.e. 100%)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18

Matrix Multiplication (ijk)

/* ijk */ Inner loop:
for (i=0; i<n; i++) {

for (3j=0; j<n; j++) {] —
sum = 0.0; L;;;J(i*) an

for (k=0; k<n; k++)
sum += a[i][k] * b[k][j]; A B C
c[i][§] = sum; t t t

}

matmult/mm.c § Row-wise Column- Fixed
wise

Misses per inner loop iteration:

A B C
0.25 1.0. 0.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { 5]
sum = 0.0;
(1,%)
for (k=0; k<n; k++) ’

Inner loop:

sum += a[i] [k] * b[k]I[j]; A B

c[il[3j] = sum | l
}

matmult/mm.c Row-wise Column-
wise
Misses per inner loop iteration:
A B C
0.25 1.0 0.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fixed

20

Matrix Multiplication (kij)

matmult/mm.c Fixed

Misses per inner loop iteration:

A B C
0.0 0.25 0.25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* kij */ Inner loop:
for (k=0; k<n; k++) {
for (i=0; i<n; i++) { (i,k)
r = a[1i] [k]; =
for (j=0; j<n; J++) A
c[i] [J] += r * b[k][]]~ 0

Row-wise Row-wise

21

Matrix Multiplication (ikj)

/* ikj */ Inner loop:
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) E(k:*g .
r = a[i] [k]; D (1,%)

for (3j=0; j<n; J++) A B C
c[i][j] += r * b[k][]j]~ s I I

patmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B

A B C
0.0 0.25 0.

25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

22

Matrix Multiplication (j

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][]J]’
for (i=0; i<n; i++)
c[i] [J] += a[i][k] * r;

matmult/mm. c

Misses per inner loop iteration:
A B
1.0 0.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ki)

Inner loop:

(*,k)

Hi

A

Column-
wise

C
1.0

(k,J)

B

A

Fixed

Column-
wise

23

Matrix Multiplication (kji)

/* kji */ Inner loop:
for (k=0; k<n; k++) {

for (3=0; j<n; j++) { ", K) . "]
r = b[k][j]; (|.<,J)

for (1i=0; i<n; i++)

c[i] [J] += a[i]l[k] * r; é ? E
matmult/mm. c
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Summary of Matrix Multiplication

Bryant and O’Hallaro

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) {
sum += a[i] [k] * b[k][j]:}
c[i][]j] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (3=0; j<n; j++) {
c[i]l[3] += r * b[k][]]/}
}
}

for (3=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k][3];
for (i=0; i<n; i++){
c[i][]J] += a[i]l[k] * r;}

ion

ijk (& jik):
e 2 loads, O stores
e misses/iter = 1.25

kij (& ikj):
e 2 loads, 1 store
e misses/iter = 0.5

jki (& kji):
e 2 loads, 1 store
e misses/iter = 2.0

25

Core i7 Matrix Multiply Performance

100

jki 7 kji

Cycles per inner loop iteration

" / /

)))
NS A\
A y A —

—O——O——O
—A

 kij / iKj

150

POOOD @

jki
Kji
ijk
jik
kij
ikj

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

26

Today

 Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

27

Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

Il
%

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

28

Cache Miss Analysis

e Assume:
* Matrix elements are doubles

* Assume the matrix is square
» Cache block = 8 doubles
» Cache size C << n (much smaller than n)

* First iteration:
* n/8 + n =9n/8 misses

* Afterwards in cache: O
(schematic)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

8 wide

29

Cache Miss Analysis

o Assume:
* Matrix elements are doubles
* Cache block = 8 doubles
» Cache size C << n (much smaller than n)

* Second iteration:
. Again:
n/8 + n = 9n/8 misses

» Total misses: z
* 9n/8* n2 = (9/8) * n3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

8 wide

30

Blocked Matrix Multiplication

Block size B x B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

31

Block size B x B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

32

Block size B x B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

33

Block size B x B

1 2 1 2
%* + %*
3 |4 3 |4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

34

118

132

166

188

Block size B x B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

35

118

132

166

188

118

132

166

188

Block size B x B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

36

Cache Miss Analysis

« Assume:
* Square Matrix
» Cache block = 8 doubles
» Cache size C << n (much smaller than n)
» Three blocks fit into cache: 3B2 < C (Where B2 is the size of B x B block)

 First (block) iteration: =
» B2/8 misses for each block
* 2n/B * B2/8 = nB/4
(omitting matrix c)

n/B blocks
_A

* Afterwards in cache N

(schematic) O]

Il
*
EEERO

Block size B x B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Ihird tdition 37

Cache Miss Analysis

« Assume:
» Cache block = 8 doubles
» Cache size C << n (much smaller than n)
* Three blocks fit into cache: 3B2 < C

[l
» Second (block) iteration:
* Same as first iteration n/B blocks
« 2n/B * B2/8 = nB/4 —
O EEEEN
p— %*

* Total misses:
* nB/4 * (n/B)2 = n3/(4B)

Block size B x B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Blocking Summary

* No blocking: (9/8) * n3
* Blocking: 1/(4B) * n3

 Suggest largest possible block size B, but limit 3B2 < C!

» Reason for dramatic difference:

* Matrix multiplication has inherent temporal locality:
 Input data: 3n2, computation 2n3
» Every array elements used O(n) times!

» But program has to be written properly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

39

Cache Summary

* Cache memories can have significant performance impact

* You can write your programs to exploit this!

* Focus on the inner loops, where bulk of computations and memory
accesses occur.

» Try to maximize spatial locality by reading data objects with
sequentially with stride 1.

* Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

40

Blocked Matrix Multiplication

(double *) calloc(sizeof (double), n*n);

*/

(e}

/* Multiply n x n matrices a and b

void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; 1 < n; i+=B)
for (J = 0; jJ < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; i++)
for (31 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + jl1l];
}
matmult/bmm. C
j1
c a b c
= % +
B AEEEE
A

Bryant and O’Hallaron, Computer Systems: A Programmer’s Persf BIOCk si1ze B X B

4

