
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Cache Performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

General Cache Concept

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-
sized transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

�``�vb �M/ +�+?2 KBbb2b UkV
$)/ �--�4σͮͭͯͱτΔ ʜʜ ɉ�� �--�4
$)/ 1)ν.0(҅ ͭΒ *��ν.0(҅ ͭΔ
!*- ρ$)/ $ ҅ ͭΔ $ ҇ ͮͭͯͱΔ $ Ҁ҅ ͯς

 1)ν.0(Ҁ҅ �--�4σ$ Ҁ ͭτΔ
!*- ρ$)/ $ ҅ ͭΔ $ ҇ ͮͭͯͱΔ $ Ҁ҅ ͯς

*��ν.0(Ҁ҅ �--�4σ$ Ҁ ͮτΔ
�bbmK2 2p2`vi?BM; #mi �--�4 Bb F2Ti BM `2;Bbi2`b U�M/ i?2 +QKTBH2` /Q2b MQi /Q
�Mvi?BM; 7mMMvVX

>Qr K�Mv /�i� +�+?2 KBbb2b QM � kE" /B`2+i@K�TT2/ +�+?2 rBi?
Re" +�+?2 #HQ+Fb\ qQmH/ � b2i@�bbQ+BiB�p2 +�+?2 #2 #2ii2`\

j

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

K�TTBM; Q7 b2ib iQ K2KQ`v U/B`2+i@K�TT2/V
.J +�+?2

b2i y

b2i K

K2KQ`v

p�Hm2b r?B+? rQmH/ #2 biQ`2/ BM b�K2 b2i
U+�+?2 bBx2V #vi2b �T�`i

�``�v(y) ?2`2

�``�v(s) r?2`2
s 4 E ·U�``�v 2H2K2Mib T2` +�+?2 #HQ+FV

�``�v(y) ?2`2

�``�v(s)
s 4 U+�+?2 bBx2 f �``�v 2H2K2Mi bBx2V

2H2K2Mib U+�+?2 bBx2V #vi2b �T�`i BM �``�v
#2r�`2 +QM~B+i KBbb2b5

9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

K�TTBM; Q7 b2ib iQ K2KQ`v U/B`2+i@K�TT2/V
.J +�+?2

b2i y

b2i K

K2KQ`v

p�Hm2b r?B+? rQmH/ #2 biQ`2/ BM b�K2 b2i
U+�+?2 bBx2V #vi2b �T�`i

�``�v(y) ?2`2

�``�v(s) r?2`2
s 4 E ·U�``�v 2H2K2Mib T2` +�+?2 #HQ+FV

�``�v(y) ?2`2

�``�v(s)
s 4 U+�+?2 bBx2 f �``�v 2H2K2Mi bBx2V

2H2K2Mib U+�+?2 bBx2V #vi2b �T�`i BM �``�v
#2r�`2 +QM~B+i KBbb2b5

9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

K�TTBM; Q7 b2ib iQ K2KQ`v U/B`2+i@K�TT2/V
.J +�+?2

b2i y

b2i K

K2KQ`v

p�Hm2b r?B+? rQmH/ #2 biQ`2/ BM b�K2 b2i
U+�+?2 bBx2V #vi2b �T�`i

�``�v(y) ?2`2

�``�v(s) r?2`2
s 4 E ·U�``�v 2H2K2Mib T2` +�+?2 #HQ+FV

�``�v(y) ?2`2

�``�v(s)
s 4 U+�+?2 bBx2 f �``�v 2H2K2Mi bBx2V

2H2K2Mib U+�+?2 bBx2V #vi2b �T�`i BM �``�v
#2r�`2 +QM~B+i KBbb2b5

9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

K�TTBM; Q7 b2ib iQ K2KQ`v U/B`2+i@K�TT2/V
.J +�+?2

b2i y

b2i K

K2KQ`v

p�Hm2b r?B+? rQmH/ #2 biQ`2/ BM b�K2 b2i
U+�+?2 bBx2V #vi2b �T�`i

�``�v(y) ?2`2

�``�v(s) r?2`2
s 4 E ·U�``�v 2H2K2Mib T2` +�+?2 #HQ+FV

�``�v(y) ?2`2

�``�v(s)
s 4 U+�+?2 bBx2 f �``�v 2H2K2Mi bBx2V

2H2K2Mib U+�+?2 bBx2V #vi2b �T�`i BM �``�v
#2r�`2 +QM~B+i KBbb2b5

9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

K�TTBM; Q7 b2ib iQ K2KQ`v Uj@r�vV
j@r�v b2i �bbQ+X +�+?2

b2i y
K2KQ`v

�``�v(y)

�``�v(s)
r?2`2 X = r�v bBx2

�``�v 2H2K2Mi bBx2

�++2bb2b Ur�v bBx2V #vi2b �T�`i BM �``�v\
#2r�`2 +QM~B+i KBbb2b5

8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

K�TTBM; Q7 b2ib iQ K2KQ`v Uj@r�vV
j@r�v b2i �bbQ+X +�+?2

b2i y
K2KQ`v

�``�v(y)

�``�v(s)
r?2`2 X = r�v bBx2

�``�v 2H2K2Mi bBx2

�++2bb2b Ur�v bBx2V #vi2b �T�`i BM �``�v\
#2r�`2 +QM~B+i KBbb2b5

8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Structure Representation

a

r

i next

0 16 24 32

struct rec {
 int a[4];
 size_t i;
 struct rec *next;
};

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

I[0].A I[0].B I[0].BV[0] I[0].B[1]

I[1].A I[1].B I[1].BV[0] I[1].B[1]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

I[0].A I[0].B I[0].BV[0] I[0].B[1]

I[1].A I[1].B I[1].BV[0] I[1].B[1]

I[2].A I[2].B I[2].BV[0] I[2].B[1]

I[3].A I[3].B I[3].BV[0] I[3].B[1]

2^9

Each block
associated the first
half of the array has
a unique spot in
memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

for (j = 0; j < 3: j = j+1){
 for(i = 0; i < 3; i = i + 1){
 x[i][j] = 2*x[i][j];
 }
}

for (i = 0; i < 3: i = i+1){
 for(j = 0; j < 3; j = j + 1){
 x[i][j] = 2*x[i][j];
 }
}

These two loops compute the same result

X[0][0] X[0][1] X[0][2]

X[1][0] X[1][1] X[1][2]

X[2][0] X[2][1] X[2][2]

Array in row major order

X[0][0] X[0][1] X[0][2] X[1][0] X[1][1] X[1][2] X[2][0] X[2][1] X[2][2]

0x0 – 0x3 0x4 - 0x7 0x8-0x11 0x12–0x15 0x16 - 0x19 0x20-0x23

Cache Optimization Techniques

Inner loop analysis

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

for (j = 0; j < 3: j = j+1){
 for(i = 0; i < 3; i = i + 1){
 x[i][j] = 2*x[i][j];
 }
}

for (i = 0; i < 3: i = i+1){
 for(j = 0; j < 3; j = j + 1){
 x[i][j] = 2*x[i][j];
 }
}

These two loops compute the same result

X[0][0] X[0][1] X[0][2]

X[1][0] X[1][1] X[1][2]

X[2][0] X[2][1] X[2][2]

Array in row major order

X[0][0] X[0][1] X[0][2] X[1][0] X[1][1] X[1][2] X[2][0] X[2][1] X[2][2]

0x0 – 0x3 0x4 - 0x7 0x8-0x11 0x12–0x15 0x16 - 0x19 0x20-0x23

Cache Optimization Techniques

int *x = malloc(N*N);
for (i = 0; i < 3: i = i+1){
 for(j = 0; j < 3; j = j + 1){
 x[i*N +j] = 2*x[i*N + j];
 }
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Matrix Multiplication Refresher

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Miss Rate Analysis for Matrix Multiply

• Assume:
• Block size = 32B (big enough for four doubles)
• Matrix dimension (N) is very large
• Cache is not even big enough to hold multiple rows

• Analysis Method:
• Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Layout of C Arrays in Memory (review)
• C arrays allocated in row-major order
• each row in contiguous memory locations

• Stepping through columns in one row:
• for (i = 0; i < N; i++)

sum += a[0][i];
• accesses successive elements
• if block size (B) > sizeof(aij) bytes, exploit spatial locality

• miss rate = sizeof(aij) / B

• Stepping through rows in one column:
• for (i = 0; i < n; i++)

sum += a[i][0];
• accesses distant elements
• no spatial locality!

• miss rate = 1 (i.e. 100%)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
 A B C
 0.25 1.0. 0.0

matmult/mm.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum
 }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
 A B C
 0.25 1.0 0.0

matmult/mm.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
 A B C
 0.0 0.25 0.25

matmult/mm.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
 A B C
 0.0 0.25 0.25

matmult/mm.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
 A B C
 1.0 0.0 1.0

matmult/mm.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
 for (j=0; j<n; j++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
 A B C
 1.0 0.0 1.0

matmult/mm.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++) {
 sum += a[i][k] * b[k][j];}
 c[i][j] = sum;
 }
}

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++){
 c[i][j] += r * b[k][j];}
 }
}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++){
 c[i][j] += a[i][k] * r;}
 }
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Core i7 Matrix Multiply Performance
C

yc
le

s
pe

r i
nn

er
 lo

op
 it

er
at

io
n

1

10

100

Array size (n)
50 100 150 200 250 300 350 400 450 500 550 600 650 700

jki
kji
ijk
jik
kij
ikj

ijk / jik

jki / kji

kij / ikj

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Today

• Cache organization and operation
• Performance impact of caches
• The memory mountain
• Rearranging loops to improve spatial locality
• Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Example: Matrix Multiplication

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n + j] += a[i*n + k] * b[k*n + j];
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Cache Miss Analysis
• Assume:

• Matrix elements are doubles
• Assume the matrix is square
• Cache block = 8 doubles
• Cache size C << n (much smaller than n)

• First iteration:
• n/8 + n = 9n/8 misses

• Afterwards in cache:  
(schematic)

*=

n

*=
8 wide

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Cache Miss Analysis
• Assume:

• Matrix elements are doubles
• Cache block = 8 doubles
• Cache size C << n (much smaller than n)

• Second iteration:
• Again:  

n/8 + n = 9n/8 misses

• Total misses:
• 9n/8 * n2 = (9/8) * n3

n

*=
8 wide

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Blocked Matrix Multiplication

a b

i1

j1

*
c

+=

Block size B x B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

a b

i1

j1

*
c

+=

Block size B x B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

a b

i1

j1

*
c

+=

Block size B x B

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

a b

i1

j1

*
c

+=

Block size B x B

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1 2

3 4 *
1 2

3 4
+

5 6

7 8

9 10

11 12*

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

a b

i1

j1

*
c

+=

Block size B x B

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1 2

3 4 *
1 2

3 4
+

5 6

7 8

9 10

11 12*=
118 132

166 188

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

a b

i1

j1

*
c

+=

Block size B x B

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1 2

3 4 *
1 2

3 4
+

5 6

7 8

9 10

11 12*=
118 132

166 188

118 132

166 188

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Cache Miss Analysis
• Assume:

• Square Matrix
• Cache block = 8 doubles
• Cache size C << n (much smaller than n)
• Three blocks fit into cache: 3B2 < C (Where B2 is the size of B x B block)

• First (block) iteration:
• B2/8 misses for each block
• 2n/B * B2/8 = nB/4  

(omitting matrix c)

• Afterwards in cache 
(schematic)

*=

*=

Block size B x B

n/B blocks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Cache Miss Analysis
• Assume:
• Cache block = 8 doubles
• Cache size C << n (much smaller than n)
• Three blocks fit into cache: 3B2 < C

• Second (block) iteration:
• Same as first iteration
• 2n/B * B2/8 = nB/4

• Total misses:
• nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Blocking Summary

• No blocking: (9/8) * n3

• Blocking: 1/(4B) * n3

• Suggest largest possible block size B, but limit 3B2 < C!

• Reason for dramatic difference:
• Matrix multiplication has inherent temporal locality:

• Input data: 3n2, computation 2n3
• Every array elements used O(n) times!

• But program has to be written properly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Cache Summary

• Cache memories can have significant performance impact

• You can write your programs to exploit this!
• Focus on the inner loops, where bulk of computations and memory

accesses occur.
• Try to maximize spatial locality by reading data objects with

sequentially with stride 1.
• Try to maximize temporal locality by using a data object as often as

possible once it’s read from memory.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i++)
 for (j1 = j; j1 < j+B; j++)
 for (k1 = k; k1 < k+B; k++)
 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*
c

=
c

+

Block size B x B

matmult/bmm.c

