DANIEL GRAHAM

Y86 ARCHITECTURE
SINGLE CYCLE PROCESSOR

VHDL TO CHIP
(OVERVIEW)

simpleAddingMachine

Display Diagram Simulation Analysis Code Tools Help

He-E-e 4O p - FEo

LOGIC ANALYZER

EE

Add
Divider Group

HdingMachine

EDIT

Register1
Register2

Add
¥ Multiphase Clock
— (1)

~ @

Register2

| « Analyze Code
simpleAddingMachine *

ML [~ New Variable

lysis - Tools Help
HDL Code >

HDL Workflow Advisor...

Options...
Generate HDL

e
al

Data Objects »

Remove HDL Coder Configuration from Model

TRIGGER

]
Add

Cursor Transition

100

<=

Previous

&> (z) Lock

Next
Transition

CURSORS

simpleAddingMachine - Logic Analyzer

«ar @
7 &[4

ZOOM & PAN

Step

Step_ping c .
orwa

Options
SIMULATE

100

A0

200

The MOSIS Service

Products & Services Customers

About Us

Events University Support Program

PPC603evFB200r

® 19647004MM

WHAT INSTRUCTIONS WILL
THE MACHINE SUPPORT

WHY MAK

- THINGS COMPL

e The CISC Approach

= X7

e The primary goal of CISC architecture is to

complete a task in as few lines of assembly as

possible.

e |ess Lines faster code, RIGHT?

LET'S LOOK AT AN EXAMPLE

location in memory

e CISC APPROACH

MULT 2:3, 5:2

Complex instruction operates directly on
memory

Easy for the complier to translate from

— Registers

high level statement

Execution

it Requires more hardware

SOURCE: ARSTECHNICA Requires more clock cycles to
Complete 4

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/

LET'S LOOK AT AN EXAMP]|

e RISC APPROACH

LOAD 2:3, A
LOAD 5:2, B
PROD B, A

STORE A, 2:3
Use instructions that can be executed in

one clock cycle

— Registers

More difficult for the compiler to generate
a=ab

Execution
Unit

b Simpler hardware less transistor

More space for registers
Also shorter clock cycles.

Takes 4 cycles

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/

IT'S ALL ABOUT TRADEOFFS

e RISC APPROACH e CISC APPROACH
LOAD 2:3, A MULT 2:3, 5:2
LOAD 5:2, B

PROD B, A

STORE A, 2:3

time time cycles instructions

program cycle - instruction - program

Today, the Intel x86 is arguable the only chip which retains CISC architecture.

~ 31
o LR
-"'----- - .. —

\AECCCEFHAMRRRRURRCOEEEE | DODDECERRCECACCRRRRRRRARACEEAT RN
ANRRLTCRRRCCCCRRCTTRRRRTFERRRRIEERIY | RORRIECRRCCCCCRRRRRRRAACAACRRRRAR R

TFARTRECTATCONCCORRRRDARDINE | OOROOOOOOCORRERRERRREAAREARDANRDANARS
CTATRERCRETAUNCRRERTARTTOTERROENR § ORISR OOOROOARTARO AR

some VAX instructions

MATCHC haystackPtr, haystackLen, needlePtr, needlelLen
Find the position of the string in needle within haystack.

POLY x, coefficientsLen, coefficientsPtr
Evaluate the polynomial whose coefficients are pointed to by coefficientPtr at the

value x.

EDITPC sourcelLen, sourcePtr, patternLen, patternPtr
Edit the string pointed to by sourcePtr using the pattern string specified by
patternPtr.

14

RISC CISC

Machine instructions Machine instructions

Microcode conversion

Microinstructions I
Microinstruction '

execution

Instruction
execution

microcode

MATCHC haystackPtr, haystackLen, needlePtr, needlelLen
Find the position of the string in needle within haystack.

loop in hardware???
typically: lookup sequence of microinstructions (“microcode”)

secret simpler instruction set

15

is CISC the winner?

well, can’t get rid of x86 features
backwards compatibility matters

more application-specific instructions

but..compilers tend to use more RISC-like subset of instructions

Y860-64 instruction set

based on x86
omits most of the 10004 instructions

leaves
addqg j pushg

subg j popg

andg cmovCC movq (renamed)
xorq call h1lt (renamed)
hop ret

much, much simpler encoding

Y86-64 instruction set

based on x86
omits most of the 1000+ instructions

leaves

addg j pushq

subqg] popg

andg cmovCC movq (renamed)
xorq call hlt (renamed)
hop ret

much, much simpler encoding

Y86-64: movq

destination
source |

D
SDmovq

1 — immediate

Y86-64: movq

destination
source |

~ | 0 — memory
SDmovq

1 — immediate

irmovq mmevq 1 imevq
rrmovq rmmovq rimevq
mrmovq mmmevq mimevq

Y86-64: movq

destination
source |

~ | D — memory
SDmovq

1 — immediate

1rmovo

Frimovce Frmmov(g

Mmrmova

Y86-64 instruction set

based on x86
omits most of the 1000+ instructions

leaves

addg j pushq

subg jJ popdg

andg cmovCC movq (renamed)
xorq call hlt (renamed)
nop ret

much, much simpler encoding

cmovCC

conditional move

exist on x86-64 (but you probably didn't see them)

Y86-64: register-to-register only

instead of:

jle skip_move
rrmovq %rax, %rbx
skip_move:

// ...

can do:
cmovg %rax, %rbx

halt

(x86-64 instruction called h1t)

Y86-64 instruction halt

stops the processor

real processors: reserved for OS

Y86-64: specifying addresses

Valid: rmmovqg %rl1l1, 10(%rl2)

Y86-64: specifying addresses

Valid: rmmovq %rll, 10(%rl2)
Invalid: rmmovqg %r1I15—30(%r12,%r13)

Invalid: rmmovq %riis—10(,%rl12,4)

Invalid: rmmovqg %r1 rl2,%r13,4)

Y86-64: accessing memory (1)

r12 < memory[10 + r11] 4 r12

Invalid: W

Instead:

mrmovq 10(%rl1l), %rll
/* overwrites %rl1l */

addg %rll, %rl2

Y86-64: accessing memory (2)

r12 <— memory[10 + 8 * r11] + r12

Invalid:addqg 10 , %6rl2

Y86-64: accessing memory (2)

r12 <— memory[10 + 8 * r11] + r12

Invalid:addq 10 s %rl2

Instead:

/* replace %r1l with 8*%rl1l */
addq %rll, %rll
addq %rll, %rll
addq »rll, %rll

mrmovqg 10(%rll), %rll
addqg %rll, %rl2

Y86-64 constants (1)

irmovg $100, %rll

only instruction with non-address constant operand

Y86-64 constants (2)

r12 «— r12 + 1

Invalid: ad

Y86-64 constants (2)

r12 < rl12 + 1
Invalid: ad Xrl2

Instead, need an extra register:

irmovg $1, %rll
addqg %rll, %rl2

32

Y86-64: operand uniqueness

only one kind of value for each operand
instruction name tells you the kind

(why movq was ‘split’ into four names)

Y86-64: condition codes

ZF — value was zero?
SF — sign bit was set? i.e. value was negative?

this course: no OF, CF (to simplify assignments)

set by addq, subqg, andq, xorq

not set by anything else

34

Y86-64: using condition codes

subq SECOND, FIRST (value = FIRST - SECOND)

J___ or | condition code bit test | value test
cmov__

le SF=1orZF =1 value < 0
L SF =1 value < 0
e ZF =1 value = 0
ne ZF = 0 value # 0
ge SF =0 value > ()
g SF=0and ZF =0 value > 0

missing OF (overflow flag); CF (carry flag)

Y86-64: conditionals (1)

cmp, TestT

Y86-64: conditionals (1)

cmp, Test

instead: use side effect of normal arithmetic

Y86-64: conditionals (1)

cmp, TestT
instead: use side effect of normal arithmetic

instead of

cmpqg %rll, %rl2
jle somewhere

maybe:
subg %rll, %rl2
jle

(but changes %r12)

36

push/pop

pushqg %rbx
X%rsp < %rsp — 8
memory[%rsp] < %rbx

popg %rbx
%rbx <— memory[%rsp]
Xrsp <— %rsp + 8

stack
growth memory[%rsp + 16]
\ memory[%rsp + 8]
value to pop — memory[%rsp]
where to push — memory[%rsp - 8]
memory|[%rsp - 16]

call /ret

call LABEL

push PC (next instruction address) on stack
jmp to LABEL address

ret

pop address from stack
jmp to that address

stack
growth memory|[%rsp + 16]
\ memory[%rsp + 8]
address ret jumps to —— memory[%rsp]
where call stores return address — memory[%rsp - 8]
memory[%rsp - 16]

Y86-04 state

%r XX — 15 registers
26r15 missing
smaller parts of registers missing

ZF (zero), SF (sign), OF{everflow)}
book has OF, we'll not use it
CF (carry) missing

Stat — processor status — halted?

PC — program counter (AKA instruction pointer)

main memory

Y86-64 encoding (1)

long addOne(long x) {
return x + 1;

}
x80-64:

movqg %rdi, %rax

addg $1, %rax
ret

Y36-64:

Y86-64 encoding (1)

long addOne(long x) {
return x + 1;

}
x80-64:

movqg %rdi, %rax
addg S$1, %rax
ret

Y860-64:

irmovqg $1,
addqg %rdi,
ret

Y86-64 instruction formats

byte:

halt

nop
rrmovq/cmovCC rA, rB
irmovq V, rB
rmmovq rA, D(rB)
mrmovq D(rB), rA
OPq rA, rB

j CC Dest

call Dest

ret

pushq rA
popqg rA

rA

rB

rB

rA

rB

S

rA

rB

rA

rB

Dest

Dest

rA

|| =l ol || ~|]| ol ;] 2] W[O R | @

rA

Secondary opcodes: cmovcec/jcc

byte:
halt

nop | always (jmp/rrmovq)
rrmovq/cmovCC rA, rB

irmovq V, rB
rmmovq rA, D(rB)
mrmovq D(rB), rA
OPq rA, rB

j CC Dest

call Dest

ret

pushqg rA

popqg rA

Secondary opcodes: OPq

byte:
halt

nop

rrmovq/cmovCC rA, rB

irmovq V, rB
rmmovq rA, D(rB)
mrmovq D(rB), rA
OPq rA, rB

j CC Dest

call Dest

ret

pushq rA

popqg rA

Registers: rA, rB

byte:
halt

nop

rrmovq/cmovCC rA, rB

irmovq V, rB
rmmovq rA, D(rB)
mrmovq D(rB), rA
OPq rA, rB

j CC Dest

call Dest

ret

pushqg rA

|| =[] o] of| || || || || W]]| —]] @] @

popqg rA

44

Immediates: V, D, Dest

byte:
halt

nop

rrmovq/cmovCC rA, rB

irmovq V, rB
rmmovq rA, D(rB)
mrmovq D(rB), rA
OPq rA, rB

j CC Dest

call Dest

cC Dest

Dest

ret

rA| F
rA| F

pushq rA

|| >l ol ol ~|| | ;] D] W[O] R | @

popq rA

45

Immediates: V, D, Dest

byte:
halt

nop

rrmovq/cmovCC rA, rB

irmovq V, rB
rmmovq rA, D(rB)
mrmovq D(rB), rA
OPq rA, rB

j CC Dest

call Dest

ret

pushqg rA

|| >l ©|| ol| || || ;] D] W] O] =] @] @

popq rA

Y86-64 encoding (1)

long addOne(long x) {
return x + 1;

¥

X36-64:
movqg %rdi, %rax
addg $1, %rax
ret

Y386-64:
irmovqg $1, %rax
addg %rdi, %rax
ret

42

Y86-64 encoding (2)

addOne:
irmovg S1, %rax
addg %rdi, %rax
ret

—————

* |3 © F 1%rax! (01 00 00 GO 00 00 00 00

Y86-64 encoding (2)

addOne:

irmovqg $1,

addg
ret

%rdi,

01 00 00 OO0 00 00 00 00

Y86-64 encoding (2)

addOne:
irmovq
addqg
ret

01 00 00 00 OO0 00 00 00

Y86-64 encoding (2)

addOne:
irmovq $1, %rax
addg %rdi, %rax
ret

01 00 00 00 00 OO0 600 00

Y86-64 encoding (2)

addOne:

irmovg S1,

addg
ret

%rdi,

01 00 OO0 OO OO0 OO0 600 060

Y86-64 encoding (2)

addOne:
irmovqg $1,
addg %rdi,

01 00 OO0 OO0 OO0 OO0 00 00

30 FO 01 00 OO0 00 0O OO0 OO0 00 60 70 90

Y86-64 decoding

20 10 60 20 61 37 72 84 00 00 00 OO0 00 OO0 00
20 12 20 01 70 68 00 00 00 00 00 OO 00

byte: 1 23456789

halt

nop

rrmovq/cmovCC rA, rB cc|rA| rB

0]

0]

1

2
irmovq V, rB 3|0|F|rB v |
rmmovq rA, D(rB) 470 [rA]rB D |
mrmovq D(rB), rA 5|0 [rA]rB D B
OPq rA, rB 6 |fn|rA|rB
j CC Dest 7 |cc Dest :
call Dest 8|0 Dest !
ret 910
pushq rA A|lO|rA| F
popq rA B|O|rA| F

Y86-64 decoding

20 10 60 20 61 37 72 84 00 00 00 00 00 00 OO0
20 12 20 01 /0 68 00 00 OO0 00 OO0 00 00

rrmovq %rcx, %rax byte: 23456789
addq %rdx, %rax halt

%rbx, %rdi nop
Ox84 rrmovq,/cmovCC rA, rB

irmovq V, rB
rmmovq rA, D(rB)
mrmovq D(rB), rA
OPq rA, rB

j CC Dest

call Dest

ret

rrmovq %rcx, %rdx
rrmovq %rax, %rcx
Jjmp Ox68

pushq rA
popq rA

o| | =[] ©|| o] | ~|| o] | K] | || W]]| || | @

