PIPELINING

critical path

every path from state output to state input needs enough time

output — may change on rising edge of clock
input — must be stable sufficiently before rising edge of clock

critical path: slowest of all these paths — determines cycle time

matters with or without pipelining

sequential addq paths

register file

R[srcA]
R[srcB]

»srcA

srcB
dstM
dstE

next R[dstM]
next R[dstE]

sequential addq paths

path 1: 25 picoseconds

register file
dsrcp RIsrcA]
R([srcB]H
*srcB
1 0xF+dstM
—) > II\ZZE: > split +dstE >ADD—
next R[dstM] | ——*
D
C —next R[dstE]

sequential addq paths

path 1: 25 picoseconds
path 2: 375 picoseconds

register file

dsrcp RIsrcA]
R[srcB]-
*srcB

oxF +|dstM
Instr. |
—p! Y i P dstE >DD

next R[dstM] |——*

PC

—(next R[dstE]

sequential addq paths

path 1: 25 picoseconds
path 2: 375 picoseconds
path 3: 500 picoseconds

register file

R[srcB]

srcB
dstM
dstE

next R[dstM]
next R[dstE]

sequential addq paths

path 1: 25 picoseconds
path 2: 375 picoseconds
path 3: 500 picoseconds

register file

R[SrrR]

| s ESS n
o1rCb

dstM
dstE

next R[dstM] |=———=
==Mnext R[dstE]

sl \

sequential addq paths

path 1: 25 picoseconds
path 2: 375 picoseconds
path 3: 500 picoseconds

overall cycle time: 500 picoseconds (longest path)

register file

R[SrrR]

T s ESS '-\
o1

dstM
dstE

next R[dstM] |="

D
C ==Mnext R[dstE]

sl \

SEQ paths

register file

»srcA

R[srcA]

R[srcB]
srcB

dstM
dstE

next R[dstM]
next R[dstE]

Data in
Data out
Addr in

write?

function
of opcode

SEQ paths

path 1: 25 picoseconds

register file PC+9
L>D
rA JsrcA RlsrcA] g
RlsrcB|k
rB %rsp-——iD_’5rCB []
B OXF—] dstM ~ ALU _
L, Instr " — aluA > Data in
—— e ——— M) °69§F:>; dStE ~§ valER Data outm
€m. orep 0| —|aluB :[>Addr in
> | .
write?
—>(next R[dStM] function
D
C next R[dstE] of opcode
i Instr. r
length

SEQ paths

path 1: 25 picoseconds path 2: 50 picoseconds

register file

R[srcA]
R[srcB]

»srcA

srcB

dstM

Data in
dstE Data out
Addr in

write?

next R[dStM] function

next R[dStE] of opcode

SEQ paths

path 1: 25 picoseconds
path 3: 400 picoseconds

path 2: 50 picoseconds

P

Instr.
Mem.

-

Instr.
length|

%rsp——i{:}_+

%rsp—

register file
R[srcB]

srcB

dstM

dstE

next R[dstM]
next R[dstE]

PC+9

ALU

valE?
%“”ﬂUB

Data in
Data out
Addr in

write?

function
of opcode

SEQ paths

path 1: 25 picoseconds path 2: 50 picoseconds
path 3: 400 picoseconds path 4: 900 picoseconds

register file PC19

o LD_

R[srcB]

srcB

dstM

ALU

‘ -
| 7| R Data in

?:D—nﬂus vl

write?

StM] fu ncItion

next R[dStE] of opcode

SEQ paths

path 1: 25 picoseconds path 2: 50 picoseconds
path 3: 400 picoseconds path 4: 900 picoseconds

register file PC+9

L LD_

R[srcB]

B %rsp——|srcB
()) a \ /| N

S
..and many, many more paths] |Db
Y Y P S==rir in

' I

write?

TExT 1 :!dStM] funcTtion

next R[dStE] of opcode

addq processor performance

-
example delays: ‘ register file
path time J B et
add 2 80 ps _,B
instruction memory 200 ps = .
register file read 125 ps PC next RldstE]
add 100 ps Hadd 2 =
N

register file write 125 ps

no pipelining: 1 instruction per 550 ps
add up everything but add 2 (critical (slowest) path)

pipelining: 1 instruction per 200 ps + pipeline register delays
slowest path through stage + pipeline register delays
latency: 800 ps + pipeline register delays (4 cycles)

13

addg CPU

Instr.

PC

—add 2F

OXF »

register file
Jsrep RlsrcA]
R[srcB]
"srcB
dstM
~dstE

- »(split| —
Mem. P

fetch and
PC update

next R[dstM]
next R[dstE]

Dpool—

addg CPU

decode

register file

»srcA

fetch and
PC update

R[srcA]
R[srcB]

»srcB

dstE

next R[dstM]
next R[dstE]

execute

V
writeback

addg CPU

decode execute

signal skips two stages register file

M ‘ R[srcA]f—

. *ISrcA
‘ R[srcB]f—
*srcB —

dstE DD H—

next R[dstM] .

D
C next R[dstE]

fetch and
PC update

V
writeback

—add 2

addg CPU

decode

execute

register file

R[srcA]
R[srcB]

»srcA

»srcB

dstE

next R[dstM]
next R[dstE]

fetch and

V
writeback

PC update

pipelined addq processor

decode

register file

»srcA

»srcB

dstE

next R[dstM]
next R[dstE]

fetch and

R[srcAlt
R[srcB]t

PC update

execute

writeback

pipelined addq processor

PC

Instr.
Mem.

jaN|

»split

register file
, R[srcA]
. ~srcA
= R[srcB]
A ~srcB
0xF+dstM
+dstE
next R[dstM]
—(next R[dstE]

ADD —

™
|VaN)

pipelined addq processor

decode/execute

Ak
fetch /decodggister file

i R[srcA]R-
A —srcA
R[sch]—EL
LA srcB

OxF>dstM

. o Instr it dstE ADD—
Mem.

next R[dstM]]

PC —+|next R[dstE]

—add 2/
10

execute /writeback

pipelined addq processor

decode/execute

nk

fetCh/deCOdr%gister file
fetch /fetch T —lerea R[SrCA]_EL
R[srcB]|-
A ~srcB
| oxF+dstM
Instr. : , I
1L | Mo pisplit] | {dstE ADD
next R[dstM] |
PC —»[next R[dstE]
—add 2/

execute /writeback
10

addqg execution

addqg %r8, %r9 // (1)
addq %r10, %rl1l // (2)

fetch /fetch

fetc

P (C
—add 2/

Instr.
Mem.

>(split

decode/execute

h/ddcode |

register file

OXF *>

R[srcA]
R([srcB]

srcA

»srcB

dstM

+dstE

next R[dstM]
next R[dstE]

—>

L

ADD —

&

execute /writeback

addg execution
addg %r8, %r9 // (1)

0/ 0/
addq %rl10, %rll // (2) deCOde/exeCUte
register file
fetch /fetch U RisreAl
fetch/decode R[srcB] - L
W= +srcB
1 OxF+dstM
4L - I'\;I‘:;: o isplit {dstE ADD|—
: next R[dstM] —
D(C addq %r8, %r9 //(1) o+ |hext R[dstE]
add 2/
address of (2)

execute /writeback

addg execution

addq %r8, %r9 // (1)
addq %r1e, %rl1l // (2)

reg #s 8, 9 from (1) -,

fetch /fetch

decode/execute

register file

fetch/de

xsplit

addq %r10, %rll //(2)

»srcB

R[srcA]
R[srcB]

srcA

dstM

»dstE

next R[dstM]
next R[dstE]

—>

L

&

execute /writeback

addqg execution
addqg %r8, %r9 // (1)

addqg %r10, %rll // (2) decode/execute
N .. €8 # 9,
reg #s 10, 11 from (2) -, register file § values for (1)
fetCh/fetCh f d d ?*_ <rcA R[SFCA]—> 3
etch/decode 5| | RisreBlH}
OxF~dstM
Instr. | R
— F ~ Merm. >sp||t_ *dstE ADD —
next R[dstM] —
PC —+|next R[dstE]
—add 2/* G

execute /writeback
11

addqg processor timing

. . . , register file
// 1nittally %r8 = 800, e
// %r9 = 900, etc. wep O

xF+dstM
ad or8, 2%r9 st
a C 96 r l G) 9 96 r l l next R[dstM]

a C 96 r l 2 ’ 96 r l 3 Pl next R[dstE]
ac %r9, %r8 Hadd 2J*

fetch | fetch/decode decode/execute execute /writeback
PC rA rB R[srcA] [R[srcB] |dstE next R[dstE] dstE
Ox0
Ox2
Ox4
OX6

addq processor timing

TH
// initially %r8 = 800, reisteRr[fI;
// %r9 = 900, etc. s R
ac %r8, %r9 | o
ac %rl0, %rll .
ac %rl2, %rl3 PC et RIdetE]
adc %r9, %r8 —add 2

fetch | fetch/decode decode/execute execute /writeback
PC rA rB R[srcA] [R[srcB] |dstE next R[dstE] dstE
Ox0
Ox2
Ox4
OX6

addq processor timing

register file

srcA R[srcA]

R[srcB]

// 1nitially %r8 = 800,
// %r9 900, etc.
addq %r8, %r9 - | st L
addg %rl10, %rll
addg %r12, %ri3 "
addq %r9, %rs8 add 2"
fetch | fetch/decode decode/execute execute/writeback
cycle |PC rA rB R[srcA] |[R[srcB] |dstE |next R[dstE] |dstE
Ox0
Ox2 9

Ox4

10

11

800

900

OX6

b5]

srcB
OxF+dstM
dstE

next R[dstM]

I

I

next R[dstE]
L-@

1k

addq processor timing

. . . p register file
// 1nitially %r8 = 800, e
// %r9 = 900, etc. e B

xF+dstM
ad %r8, %r9 astE
aC 96rl®’ 96rll next R[dstM]

addq %r12, %ril3 - s Rit]
/ / —-2-
ac %ro, %r8 add

fetch | fetch/decode decode/execute execute /writeback
PC rA rB R[srcA] [R[srcB] |dstE next R[dstE] dstE
0x0
Ox2
Ox4
OX6

addqg processor timing

-

. . . p register file
// 1nittally %r8 = 800, e
// %r9 = 900, etc. wee O

xF+dstM
ad or8, 2%r9 st
a C 96 r l @) 96 r l l next R[dstM]

addq %ri2, %ri3 - e R
ac %r9o, %r8 -add 2

fetch | fetch/decode decode/execute execute/writeback
PC rA rB R[srcA] [R[srcB] |dstE next R[dstE] dstE
Ox0
Ox2
Ox4
OXx6

pipeline register naming convention

PC

add 2/

Instr.
Mem.

Isplit

d dstE

N

E dstE
/

D_rA
\ ;9g|sTer file
‘=srcA R[srcA]H~
R[srcB]H~
¥ NE *srcB
0xF+dstM
~dstE

W _ dst

pipeline register naming convention

f — fetch sends values here
D — decode receives values here

d — decode sends values here

next R[dstM]
next R[dstE]

Sroof—

addq HCL

/* f: from fetch */
f_rA = 110bytes[12..16];
f_rB 110bytes[8..12];

/* fetch to decode */
/* f_rA -> D_rA, etc. */
register fD {
rA : 4 = REG_NONE;
rB : 4 = REG_NONE;

pipeline register naming convention

d_dstE E_dstE
RN

D_TA [
regiSter file
srcA RIsrcA]H

R[srcB]H-

srcB
xF+dstM
— NSt L lspli dstE
em.
next R[dstM]

PC next R[dstE]

E—— H—<—e—dstE—

/* D: to decode

d: from decode */
d_dstE = D_rB;
/* use register file: */
reg_srcA = D_rA;
d_valA = reg_outputA;

/* decode to execute */
register dE {
dstE : 4 = REG_NONE;
valA : 64 = 0;
valB : 64 = 0;

addq fetch/decode ﬂ

unpipelined

/* Fetch+PC Update*/
pc = P_pc;

p_pc = pc + 2

rA = 110bytes[12..16];
rB = 110bytes[8..12];
/* Decode */
reg_srcA rA;
reg_srcB rB;
reg_dstE rB;

valA = reg_outputA;
valB = reg_outputB;

pipeline register naming convention

PC
pipelined

/* Fetch+PC Update*/
pc = P_pc;

p_pc = pc + 2

f_rA = 110bytes[12..16];
f_rB = 110bytes[8..12];
/* Decode */

reg_srcA D_rA;
reg_srcB D_rB;

d_dstE _rB;

d_valA reg_outputA;
d_valB reg_outputB;

d_dstE

f rA
- register file
N) L]

H ‘ srcA

‘E» srcB

oxF+dstM

”: " » dstE

next R[dstM]

E_dstE
e /
r

R[schi»E%L

Dw

’—s next R[dstE]

-

—<—e—dstE—

pipeline register naming convention

d_dstE E_dstE
\a yd
‘;ﬂﬁm
o iEiﬁ’Q}::@L
xF>dstM
dstE \‘>ADD

next R[dstM]

addq pipeline registers ' o i
F — +}f < e dstE

register pP {
pc : 64 = 0;
T
/* Fetch+PC Updatex/
register fD {
rA : 4 = REG_NONE; rB : 4 = REG_NONE;
T3
/* Decode x*/
register dE {
valA : 64 = 0; valB : 64 = @9; dstE : 4 = REG_NONE;
¥

/* Execute x/
register eW {

valE : 64 = 0; dstE : 4 = REG_NONE;
}

/* Writeback x/

SEQ without stages

register file

R[srcA]
R[srcB]

»srcA

srcB

dstM

Data in
dstE Data out
Addr in

write?

next R[dstM]
next R[dstE]

SEQ with stages

decode
execute

memory

register file

R[srcA]
R[srcB]

»srcA

Data in
Data out
Addr in

write?

writeback

SEQ with stages

decode

execute

memory

fetch

register file

R[srcA]
R[srcB]

*srcA

Yy &

Instr Data in
> M ' Data out
em. Addr in
write?
P
ij Instr.
length

writeback

SEQ with stages

decode

] e

rule: signal to next stage (except flow control)

memory

register file
derep RlsrcA]
R[srcB]
L srcB
Instr Data in
— - M ' Data out
> em. Addr in
write?
P
l— Instr.
length

writeback

SEQ with stages (actually sequential)

execute
N

>
>
>
>
>

memory

register file

R[srcA]

»srcA

Data in
Data out
Addr in

write?

writeback

adding pipeline registers

decode
execute

memory

register file

R[srcA]
R[srcB]

writeback I

»srcA

Data in
Data out
Addr in

write?

adding pipeline registers

decode

execute

memory

register file

R([srcA]
R[srcB]

»srcA

Data in
Data out
Addr in

write?

writeback

memory read/write logic

address ~
data
data memory
output
data
Input

— is read?

- is write?

adding pipeline registers

decode

OxF—
— %P¥p=

register file

__ execute

memory

fetch

—1 A srcA RIsreAlly

R[srcB]H

I~ rB™ %rsp srcB
| e,
_»U» | Instr. dstE valEh

Data in
Data out

D—>Addr in

write?

Mem.

»next R[¢istM]

next R[{istE]

writeback

memory read/write logic

address ~

data

data memory
output

data
input

— is read?
is write?

memory read /write: SEQ code

icode = 110bytes[4..8];
mem_readbit = [
icode == MRMOVQ | |

memory read/write: PIPE code

f_dcode = 110bytes[4..8];
register fD { /* and dE and eM and miW */
icode : 4 = NOP;

}
d_icode = D_1dcode; from

instr. = ™ | —
e_icode = E_1code; mem. |
mem_readbit = [

M_icode == MRMOVQ || ...: 1;
0;
15

addq processor: data hazard

// initially %r8 = 800,
// %r9 = 900, etc.
ad %r8, %r9

register file

srcA RIsrcA]

R[srcB]

ad %r9, %r8
PC

ac

3C —add 2

srcB

xF>dstM

dstE

next R[dstM]
next R[dstE]

fetch /decode decode/execute execute /writeback

rA B R[srcA] |R[srcB] |dstE next R[dstE]

dstE

addq processor: data hazard

register file

// initially %r8 = 800,

‘ 1
|

L ——lsreA R[SrCA]"E:‘
// %r9 = 900, etc. ‘ I
addq %r8, %r9 _i} | il LA
addq %r9, %r8 et Rl
addqg PC next R[dstE]
addq add 2 0
[ZaN
fetch | fetch/decode decode/execute execute/writeback
cycle |PC rA rB R[srcA] [R[srcB] |dstE |next R[dstE] dstE
0] Ox0
1 Ox2 8 9
2 9 8 —866 900 9
3 900 00 8 1700 9
4 1700 8
should be 1700

data hazard

%r8, %r9 // (1)
%r9o, %r8 // (2)

pipeline implementation

ISA specification

read r8, r9 for (1)

read r8, r9 for (1)

read r9, r8 for (2)

write r9 for (1)

write r9 for (1)

read r9, r8 for (2)

write r8 for (2)

write r8 ror (2)

vipeline reads older value..

instead of value ISA says was just written

data hazard compiler solution

addqg %r8, %r9
nop
nop
addqg %r9, %r8

one solution: change the ISA
all addqgs take effect three instructions later

make it compiler’'s job

usually not accepta

data hazard hardware solution

addq %r8, %r9
// hardware inserts: nop

// hardware inserts: nop
addq %r9, %r8

how about hardware add nops?

called stalling

extra logic:

sometimes don't change PC
sometimes put do-nothing values in pipeline registers

addq processor: data hazard stall

1k

// initially %r8 = 800, g e
// %r9 = 900, etc. ‘ " s
addqg %r8, %r9 , e J o e

// hardware stalls twice .
addq %r9, %r8 P + stalling logic (not shown) i rese
addq %rl10, %rll Hadd 2F —

fetch | fetch—decode decode—rexecute execute—writeback
cycle |PC R[srcA] [R[srcB] |dstE |next R[dstE] |dstE NEED EXTRA

Ox0 CYCLE TO
Ox2*

Ox2*
Ox2
Ox4

addq processor: data hazard stall

// 1nitially %r8
// %r9
addqgq %r8, %r9

// hardware stalls twice
addq %r9, %r8

addq %rl10, %rll

800,

900, etc.

Instr.

Mem.

register file

srcA R[srcA]

R[srcB]

|

Src

xF>dstM

dstE

Pq + stalling logic (not shown)

kt R[dstM]
kt R[dstE]

add 2/

fetch | fetch—decode decode—rexecute

execute—writeback

cycle |PC R[srcA] |[R[srcB] |dstE

next R[dstE]

dstE

Ox0
OX2*

Ox2x*

Ox2

Ox4

addq processor: data hazard stall

1

// iﬂitidlly 96/"8 — 8@0, :’reciisteF;S]:i:-
// %r9 = 900, etc. [

R[srcB]H

J et
addq %r8, %r9 J
// hardware stalls twice R
addq %9 , %8 Pq + stalling logic (not shown) | ruste]
addq %rl0, %rill add 7

fetch | fetch—decode decode—execute execute—writeback

cycle |PC R[srcA] [R[srcB] |dstE |next R[dstE] |dstE
0x0

OX2*
OXx2x*
Ox2
Ox4

1700
1000 (1100 2500

R[9] written during cycle 3; read during cycle 4

addq stall

addq %r8, %r9
// hardware stalls twice

add
add

%r9, %r8
%rle, %rll

cyc

fetch

decode

execute

writeback

addq %r8, %r9

\

addq %r9, %r8
Y

addq %r8, %r9

—

nop “bubble”

addq %r8, %r9

addq %r9, %r8
A

—

addq %r9, %r8

nop “bubble”

nop “bubble”

addq %r8, %r9

T~

addq %r10, %rl11

addq %r9, %r8

nop “bubble”

nop “bubble”

—

—

addq %r10, %r11

addq %r9, %r8

nop “bubble”

hazard exericse

addq %r8, %ro)]
addqg %r10, %rll — J L oes R[S”B]'@L
addq %r9, %rs8 iy it lJ il L A
addq %rll, %rl0 A next RdstM]
PC next R[dstE]
—add 2/ N
A

to resolve hazards with stalling, how many stalls are needed?

hazard exericse solution

aC

aC

acC

96r8, /Or9
%r10, %rill
96r9, /Or8

acC

%rll, %rl0

cycle # O
F

register file

tr. split

0xF+dstM
dstE

srcB

next R[dstM]

next R[dstE]

srcA RIsreA]=+
R[srcB]H~

1k

D 1D]

adding pipeline registers

decode

__ execute

OXF—
memory
%PEp=]
register file
] R[srcA]HH
rA srcA
R[srcB]H- “
S |’ rB‘%%D—'SrCB [srcB] N
dstM .,/D_>

control hazard] cnfo =

Data in
Data out—
Addr in

write?

PC |->next R[{istE]

Y |instr.

BB'_Iength4
Su bq %r8 ; %r9 writeback .
je OXFFFF
addg %rl0, %rll

fetch fetch—decode decode—execute execute—writeback

cycle |PC SF/ZF |rA rB R[srcA] [R[srcB] |dstE [next R[dstE] |dstE
0 Ox0 0/1
1 Ox2 0/1 8 9

2 2727 0/1 OxF OxF (800 900 9

adding pipeline registers

decode

execute

memory

OxF—
] e

1L

ALU

valE
O-i aluB

LData in

=/ F—~(Addr in

Data out—

write?

register file
| A orcA RIsrcA]H
— rB‘%lmD—‘sch RlsreBlT
|f dstM
ZAN next R[EstM]
control hazard | e
v [instr.
] length|
subqg %r8, %r9
je OXFFFF
addq %rl0, %rll
fetch fetch—decode decode—rexecute execute—writeback
cycle |PC SF/ZF |rA rB R[srcA] |R[srcB] |dstE [next R[dstE] |dstE
0] Ox0 0/1
1 Dt a/1 8 9
2 /l OxF OxF [800 900 9
OxFFFF if R[8] = R[9]; Ox12 otherwise

writeback

adding pipeline registers

decode
o execute
memor
— %%Ezgj“ y
fetch register file bo
control hazard: ¢ T L e
— —rBWIWD‘sch R[sch]--
dstM ALU

d | Instr. All e j}’a'“AIE_ DData in B

I | Mem. s oi%—wluéa ID_’Ad?itai:Ut
addqg %r8, %r9 i o

° PC next R[§IstE]
// i1nsert two nops | e i
. a= Iength<
je OXFFFF - .
writeback
addq %rl0, %rll
fetch fetch—decode decode—execute execute—writeback

cycle |PC SF/ZF |rA rB R[srcA] |[R[srcB] |dstE |next R[dstE] |dstE
0] Ox0 0/1
1 Ox2 0/1 8 9
2 Ox2* 0/1 OxF OXF (800 900 9
3 Ox2* |0/0 OxF OxF |——~ - OxF 1700 9
4 Ox10 |0/0 OxF OxF |[——— - OxF |[——— OxF
5 10 11 -—= i OxXF [~ OXF
6 1000 1100 11 i OXF

2Q

ANOT

-R WAY TO T

INK, ABOUT IT

stalling for conditional jmps

subg %r8, %r8
je label

label: 1rmovg

fetch decode |execute memory |writeback
OPq
jCC OPq
wait for jCC [jCC OPq (set ZF)
wait for jCC |nothing [jCC (use ZF) |OPq

irmovgq nothing |nothing jCC (done)

stalling for conditional jmps

subg %r8, %r8
je label

label: 1drmovg

fetch decode |execute memory |writeback
OPq
jCC OPq
wait for jCC |jCC OPq (set ZF)
wait for jCC |nothing |jJCC (use ZF) |OPq

irmovq nothing |nothing jCC (done)

stalling for conditional jmps

subg %r8, %r8
je label

label: 1drmovq

fetch decode |execute memory
OPq

jCC OPq

wait for jCC |jCC OPq (set ZF) 4 ZF sent via register
wait for jCC |nothing |jJCC (use ZF) OPq

irmovq nothing |nothing jCC (done) [OPq

writeback

stalling for conditional

subqg %r8, %r8
je label

label: 1rmovg

jmps

fetch decode execute

memory

writeback

OPq
jCC OPq

wait for jCC |[jCC OPq (set ZF)

wait for jCC @Mg/JCC (use ZF)

OPq

iIrmovq nothing |nothing

jCC (done)

“taken” sent from execute to fetch

adding pipeline registers

decode

- execute
stalling for ret S =
register file
W L Ry
call empty ﬂﬁ o 1 dﬂ i
—»Inext R[fistM]
addq %r8, %r9 “|Mr e
Iength
writeback .
empty: ret
time |fetch decode |execute memory |\writeback
1 call
2 |ret call
3 |wait for ret |ret call
4 |wait for ret |nothing |ret call (store)
5 |wait for ret |nothing |nothing ret (load) |call
6 |addq nothing |nothing nothing ret

exercise: pipelining improvement (1)

1% of instructions executed need to stall 4 cycles for hazard

2% stall exactly 3
10% stall exactly 2

15% stall exactly 1

how many cycles per instruction? (compute the mean)

35

exercise: pipelining improvement (1)

1% of instructions executed need to stall 4 cycles for hazard
2% stall exactly 3
10% stall exactly 2

15% stall exactly 1

how many cycles per instruction? (compute the mean)

I+ 1ox14+.10x24+.02x 34 .01 x4 =1.45

exercise: pipelining improvement (2)

1% of instructions executed need to stall 4 cycles for hazard

2% stall exactly 3

10% stall exactly 2

15% stall exactly 1

how many cycles per instruction? 1.45

original cycle time: 1200 ps; new cycle time: 300 ps

how much better throughput?

exercise: pipelining improvement (2)

1% of instructions executed need to stall 4 cycles for hazard
2% stall exactly 3

10% stall exactly 2

15% stall exactly 1

how many cycles per instruction? 1.45

original cycle time: 1200 ps; new cycle time: 300 ps

how much better throughput?
1 every (1.45 x 300 = 435 ps) versus 1 every 1200 — 2.76 faster

pipeline stages

fetch — instruction memory, most PC computation
decode — reading register file
execute — computation, condition code read/write
memory — memory read /write

writeback — writing register file, writing Stat register

pipeline stages

ONLY REASONS WERE HAZARD IS BECAUSE DIFFERENT STAGE

fetch — instruction memory, most PC computation

decode — reading register file

execute — computation, condition code read/write

memory — memory read /write

time|fetch decode |execute memory |writeback

1 |OPq

2 |jCC OPq

3 |wait for jCC |jCC OPq (set ZF) 4 ZF sent via register
4 wait for jCC |nothing [JCC (use ZF) OPq

5 lirmovg nothing |nothing jCC (done) |OPq

pipeline stages

fetch — instruction memory, most PC computation

decode — reading register fil

common case: fetch next instruction in next cycle

“ can’t for conditional jump, return

memory — memory read /write

writeback — writing register file, writing Stat register

pipeline stages

fetch — instruction memory, most PC computation

decode — reading register file

execute — computation, condition code read/write

memory — memory read /write \

read /write in same stage avoids reading wrong value
get value updated for prior instruction (not earlier/later)

writeba

pipeline stages

fetch — instruction memory, most PC computation
decode — reading register file
execute — computation, condition code read/write
memory — memory read /write

writeback — writing register file, writing Stat register

don't want to halt until everything else is done

stalling costs

with only stalling:
extra 3 cycles (total 4) for every ret
extra 2 cycles (total 3) for conditional jmp

up to 3 extra cycles for data dependencies

stalling costs

with only stalling:
extra 3 cycles (total 4) for every ret
extra 2 cycles (total 3) for conditional jmp

up to 3 extra cycles for data dependencies

can we do better?

43

stalling costs

with only stalling:

extra 3 cycles (total 4) for every ret

extra 2 cycles (total 3) for conditionaM

up to 3 extra cycles for data deps

can't easily read memory early
might be written in previous instruction

can we do better?

stalling costs

with only stalling:
extra 3 cycles (total 4) for every ret

extra 2 cycles (total 3) for conditional jmp

up to 3 extra cycles for data dependencies

trick: use values waiting to get to register file

can we do better?

